Universiti Teknologi MARA

Restaurant Locator Using Djikstra Algorithm

Mohamad Aliff Hakimi Bin Lukman Hakim

Thesis submitted in fulfilment of the requirement for Bachelor of Computer Science (Hons.) Faculty of Computer and Mathematical Sciences

January 2017

ACKNOWLEDGEMENT

Alhamdulillah, praises and thanks to Allah because of His Almighty and His utmost blessings, I was able to finish this research within the time duration given. Firstly, my special thanks go to my supervisor, Engku Zain Bin Engku Azam for guiding me until the completion of this project. Not to forget, the encouragement and all the creative ideas that have been given to me. Special appreciation also goes to my beloved parents for always giving a moral support when I am having a difficulty in completing this project. Last but not least, I would like to give my gratitude to my dearest friends who are non-stop from giving answer for my entire questions and in completing my report.

ABSTRACT

Imagine you are hungry and want to drive from a house to a restaurant that serves delicious food. People usually hard to identify the best route to get to the desired location without any navigation tools. As a result, they can be easily lost in the unfamiliar area. People will normally refer to the signboards or ask around for direction in which will either ending up reaching the destination or the other way round. These will definitely causing loosing lots of time, energy and cost. In this research, a navigation system called ResLoc is being proposed. This system will help user especially for the food lovers in finding their favourite restaurants around Kota Bharu. This route-finding problem is one of the most important computer applications in the transportation industry. In network theory, it's known as the shortest-path problem, and Dijkstra's algorithm is usually used to solve it. Dijkstra's algorithm is one of the classic shortest path search algorithms. Dijkstra's algorithm is the technique that can solve the problem by itself. The algorithm searches in a weighted directed network to find the shortest path from a given node to every other node in the network. For the result, Djikstra's algorithm will find the shortest path towards the desired restaurants regarding to the user current locations besides the system will also generate map towards the locations.

v

TABLE OF CONTENTS

CON	TENTS	PAGE
SUPE	RVISOR APPROVAL	ii
STUD	ENT DECLARATION	iii
ACKN	OWLEDGEMENT	iv
ABST	RACT	v
LIST (OF FIGURES	ix
LIST (OF TABLES	х
LIST (OF ABBREVIATIONS	xi
СНАР	TER 1: INTRODUCTION	
1.1	Background of study	1
1.2	Problem statement	3
1.3	Objective	4
1.4	Scope	4
	1.4.1 User	4
	1.4.2 Data	4
	1.4.3 Technique	4
1.5	Project significant	5
1.6	Summary	6
СНАР	TER 2: LITERATURE REVIEW	
2.1	Location Detection	7
2.2	Restaurant	8
	2.2.1 History	8
	2.2.2 Types of Restaurants	9
2.3	Djikstra's Algorithm vi	10

	2.3.1 Step by step of Djistra Algorithm	11	
	2.3.2 Example of Djikstra Algorithm	12	
2.4	Mobile Computing	13	
	2.4.1 Definition of Mobile Computing	13	
	2.4.2 Type Of Application	14	
	2.4.3 Android	15	
2.5	GPS (Global Positioning System)	17	
	2.5.1 GPS System Architecture	18	
	2.5.2 How Does GPS works	20	
	2.5.3 Location Based Services (LBS)	21	
	2.5.4 Google GPS API	23	
2.6	Existing Application	24	
	2.6.1 Waze	24	
	2.6.2 Google Maps	25	
	2.6.3 Sygic: GPS navigation	25	
	2.6.4 GPS Phone Tracking Pro	25	
	2.6.5 PAPAGO!	26	
2.7	Summary	27	
CHAPTER 3: RESEARCH METHODOLOGY			
3.1	Introduction	28	
3.2	Research Methodology Framework	28	
	3.2.1 Detailed Framework	29	
3.3	Research Analysis	30	
	3.3.1 Feasibility Study	31	
	3.3.2 Developer Requirement	32	
3.4	Research Design & Implementation	33	