UNIVERSITI TEKNOLOGI MARA

PERFORMANCE EVALUATION OF RELAY DEPLOYMENT IN LONG TERM EVOLUTION ADVANCED (LTE-A) NETWORK

AMINAH NAJIHAH BINTI JAAFAR

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

January 2016

ABSTRACT

Normally, the cell-edged users in wireless network experiencing a low Signal-to-Interference-plus-Noise-Ratio (SINR). This problem will result in low signal strength and it will cause a bad performance for the overall system. Moreover, the small cell capacity and cell coverage will occur at the cell-edge. To support a high data services and applications it is required a peak data rate. The enhancement of the cell-edge capacity as well as cell coverage are the expectation that can be provided by Long Term Evolution Advanced (LTE-A). In this paper, a new scheme for an optimum Relay Node (RN) placement in LTE-A cellular network to enhance the coverage extension at cell-edges region is proposed. It is due to user with low SINR will hand over to the Relay Node (RN) and will efficiently utilize the system resources. Various LTE-A technologies including RN deployments have been studied to meet these requirements. To provide high data rates coverage with a minimum operator cost is the advantage of RNs. Algorithms to determine the minimum distance between users and both Base Station (BS) and RN and the signal strength received in the proposed scheme also provided. The simulation results indicate an improvement in signal strength for the deployment of fixed relays.

ACKNOWLEDGEMENT

I would like to express gratitude to my supervisor, Dr. Azita Laily Binti Yusof, who guided me throughout this project. Her advice and suggestions proved extremely valuable. I particularly appreciate her being patient, supportive and encouraging. She showed me how to be dedicated, persistent and productive. I would also thank to Dr. Ahmad Ihsan Bin Yassin for his valuable help. Finally, I deeply appreciate my family and friends for their encouragement and understanding.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ti
SUPERVISOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS / NOMENCLATURE	xiii

CHAPTER ONE: INTRODUCTION

Background of Study	1
Problem Statement	2
Objectives	2
Scope of Work	2
Thesis Organization	3
	Problem Statement Objectives Scope of Work

CHAPTER TWO: LITERATURE REVIEW

2.1	Long	Term Evolution Advanced (LTE-A)	4
	2.1.1	LTE-A Development History	6
	2.1.2	LTE-A Key Features and Requirements	7
	2.1.3	LTE-A Technology	7
2.2	Basic	Concepts of Relay Network	10
	2.2.1	Improvements in Relays Deployment	11
	2.2.2	Overview of Relay Technology	12
		2.2.2.1 Techniques of Relay Technology	12
		2.2.2.2 Types of Decode-and-Forward Relay	13
		2.2.2.3 Types of Relay Technology	18
	2.2.3	Architecture of Relay	20

		2.2.3.1 Fixed Relay Node	20
		2.2.3.2 Moving/Mobile Relay Node	22
	2.2.4	Scenarios of Relays in Mobile Communication	24
	2.2.5	Advantages of Relays	25
2.3	Revie	ws on Previous Papers	26
	2.3.1	Evaluation of Fixed and Mobile Relay	26
	2.3.2	Relay as Replacement to Base Station	26
	2.3.3	Relay Site Planning	26
	2.3.4	Performance of LTE-A with Relays	27
	2.3.5	Optimization of Cell Capacity	27
	2.3.6	Cooperative Relay in Mobile Network	27
	2.3.7	Relay Placement in Wireless Communication	28
	2.3.8	Multi-Hop Multi-Band in Cellular Networks	28
	2.3.9	Relay for Wireless and Mobile Broadband	28
	2.3.10) System Capacity of a Cellular Network with Cooperative	29
		Mobile Relay	
2.4	Chapt	ter Summary	30
СН	APTE	R THREE: RESEARCH METHODOLOGY	
3.1	Meas	urement part	31
	3.1.1	Work Flow for Data Collection	32
	3.1.2	Drive Test	33
3.2	Simu	lation Part	35
	3.2.1	Work Flow of Handover for Relay Deployment	36
3.3	Chap	ter Summary	41
СН	АРТЕ	R FOUR: RESULTS AND DISCUSSION	
4.1	Meas	urement Part	42
	4.1.1	Relationship between Received Signal Strength Indicator,	43
		RSSI and Time from Padang Jawa to KL Sentral	
	4.1.2	Relationship between Received Signal Strength Indicator,	44
		RSSI and Time from KL Sentral to Padang Jawa	
		-	