

EXTENDED ABSTRACT BOOK

Publication Date: 31 October 2022

ISBN: 978-967-15337-0-3

In Partnership:

Tadulako University

https://jamcsiix.wixsite.com/2022

Extended abstract

COPYRIGHT © 2022

ISBN: 978-967-15337-0-3

i-JaMCSIIX

Universiti Teknologi MARA Cawangan Melaka Kampus Jasin

77300, Merlimau, Melaka

Web: https://jamcsiix.wixsite.com/2022

ORGANIZING COMMITTEE

DATDON	ASSOC DECE DE ISMADI ME DADADUDIN
ADVISOD 1	T- DD LAMAL LIDDIN LASMIC
ADVISOR	IS. DR. JAMALUDDIN JASMIS
ADVISOR 2	DATO IS. DR. MOHD NOR HAJAR HASROL JONO
PROJECT LEADER	DR. KAIHAH AMINUDDIN
SECRETARY I	Ts. DR. NOR AFIRDAUS ZAINAL ABIDIN
SECRETARY 2	PUAN NOR AIMUNI MD RASHID
TREASURER 1	CIK UMMU MARDHIAH ABDUL JALIL
TREASURER 2	CIK SITI MAISARAH MD ZAIN
PUBLICATION	DR. RAIHAH AMINUDDIN
	DR. SITI FEIRUSZ AHMAD FESOL
JURY	Ts. RAIHANA MD SAIDI
	PUAN NOR FADILAH TAHAR @ YUSOFF
	PUAN NORDIANAH JUSOH @ HUSSAIN
	PUAN BUSHRA ABDUL HALIM
REGISTRATION	CIK SITI AISYAH ABDUL KADIR
	PUAN ANIS SHOBIRIN ABDULLAH SANI
	DR SURYAEFIZA KARIANTO
SYSTEM	CIK FADZLIN AHMADON
PROMOTION	PUAN ZUHRI ARAFAH ZULKIFLI
	ENCIK MOHAMAD ASROL ARSHAD
	CIK NOPZATUL BAZAMAH AZMAN SHAH
	Te NURUI NAIWA ARDIJI RAHID@ARDIJI
	DASHID
MULTIMEDIA	CIV EADIL AU EZI INA SUAUDIDIN
	ENCIR MOUD TALIEIO MISUAN
	T- DD CHEW CHIOL SHENC
	IS. DR. CHEW CHIOU SHENG ENCIR MOUD AMIDUL ATAN (ADD)
AWADD	ENCIK MOHD AMIKUL ATAN (APB)
AWARD	PUAN HAJAK IZZA II MOHD GHAZALLI
	PUAN NURUL EMYZA ZAHIDI
	PUAN FATIMAH HASHIM
	PUAN SITI RAMIZAH JAMA
CERTIFICATE	PUAN FAIQAH HAFIDZAH HALIM
	PUAN NUR NABILAH ABU MANGSHOR
	PUAN NUR SYUHADA MUHAMMAT PAZIL
	PUAN NUR SUHAILAYANI SUHAIMI
TECHNICAL & PROTOCOL	DR. AHMAD FIRDAUS AHMAD FADZIL
	Ts. ALBIN LEMUEL KUSHAN
	ENCIK MOHD NABIL ZULHEMAY
	CIK ANIS AFIQAH SHARIP
SPONSOR	PUAN SITI NURAMALINA JOHARI
	PUAN ANIS AMILAH SHARI
INTERNATIONAL RELATIONS	PUAN SYAFNIDAR ABDUL HALIM
	Ts. FARIDAH SAPPAR
	PROF. DR. IR. MAHFUDZ, M.P
	PROF. DR. IR. AMAR, S.T., M.T.
	PROF. IR. MARSETYO, M.Sc.Ag., Ph.D.
	ELISA SESA, S.Si., M.Si., Ph.D.
	PROF. IR. DARMAWATI DARWIS, Ph.D.
	DR. LIE.SC I NENGAH SWASTIKA, M.Sc. M Lif Sc.
	ABDUL RAHMAN, S.Si., M Si
	SELVI MUSDALIFAH S Si M Si
	DR I WAYAN SUDARSANA M Si
	DIV. 1 1111111110001110111111, 111.01.

NUR'ENI, s.Si., M.Si. DR. ENG, IR. ANDI RUSDIN, S.T.m M.T., M.Sc. IR. ANDI ARHAM ADAM, S.T., M.Sc(Eng)., Ph.D. DR. IR. MOH. YAZDI PUSADAN, M.T. WIRDAYANTI, S.T., M.Eng. IR. SAIFUL HENDRA, M.I.Kom. MUKRIM, S.Pd., M.Ed., Ph.D. ZARKIANI HASYIM, S.Pd., M.Pd. AHMAD RIFALDI DJAHIR, S.Pd. MARIANI, A.Md. Kom. HAPPY PUSPITASARI, S.S. JUNAIDI, S.Si., M.Si., Ph.D Dr. Ir. RUSTAN EFENDI M.T. **PUAN SITI FAIRUS FUZI** PUAN SITI NURSYAHIRA ZAINUDIN

SPECIAL TASK

BRONZE SPONSOR

PUAN AZLIN DAHLAN PUAN BUSHRA ABDUL HALIM PUAN FARAH NADZIRAH JAMRUS Ts. FARIDAH SAPPAR PUAN HAZRATI ZAINI DR. NOOR HASIMAH IBRAHIM TEO PUAN NOR ADILA KEDIN PUAN NURUL EMYZA ZAHIDI Ts. NURULHUDA GHAZALI DR. RAIHAH AMINUDDIN PUAN SHAHITUL BADARIAH SULAIMAN PUAN SITI NURAMALINA JOHARI PUAN SITI NURSYAHIRA BT ZAINUDIN PUAN SITI RAMIZAH JAMA DR. SURYAEFIZA KARJANTO CIK UMMU MARDHIAH ABDUL JALIL PUAN YUSARIMA MUHAMAD

LIST OF REVIEWERS

DR. AZLAN BIN ABDUL AZIZ DR NOOR SURIANA BINTI ABU BAKAR DR. NOR HANIM ABD RAHMAN DR. RAIHAH BINTI AMINUDDIN DR. SAIDATUL IZYANIE BINTI KAMARUDIN DR. UNG LING LING MR JIWA NORIS BIN HAMID MR. MOHD. IKHSAN MD. RAUS MR. SULAIMAN BIN MAHZAN MRS. ASMA HANEE BINTI ARIFFIN MRS. FARAH NADZIRAH BT JAMRUS MRS. MAHFUDZAH OTHMAN MRS. NOOREZATTY MOHD YUSOP MRS. NOR AINI BINTI HASSANUDDIN MRS. NOR HASNUL AZIRAH ABDUL HAMID MRS. NORAINI BINTI HASAN MRS. NUR HIDAYAH MD NOH MRS. NUR IDALISA NORDDIN MRS. NURSYAZNI MOHAMAD SUKRI MRS. RAUDZATUL FATHIYAH BT MOHD SAID MRS. ROZIANIWATI BINTI YUSOF MRS. SAMSIAH ABDUL RAZAK MRS. SITI NURUL FITRIAH MOHAMAD MRS. TAMMIE CHRISTY SAIBIN MRS. UMMU FATIHAH BINTI MOHD BAHRIN MS. FADILAH EZLINA BINTI SHAHBUDIN MS. FADZILAH BINTI ABDOL RAZAK MS. NOR ALWANI BINTI OMAR MS_NUR NABILAH ABU MANGSHOR MS. SITI FATIMAH BINTI MOHD RUM MS. ZUHRI ARAFAH BINTI ZULKIFLI TS. DR. ISMASSABAH ISMAIL TS. DR. SHAFAF IBRAHIM TS HAWA BINTI MOHD EKHSAN TS NURULHUDA GHAZALI

Contents

No.	Registration ID	Project Title	Page
1	JM006	Hiding Information Digitally Under Picture (HIDUP) Using Image Steganography	1
2	JM009	Learning Shapes and Colours using JomLearn & Play Application for Children	5
3	JM010	A Novel Quality Grading Determination using Boxplot Analysis and Stepwise Regression for Agarwood Oil Significant Compounds.	9
4	JM011	A Novelty Classification Model for Varied Agarwood Oil Quality Using The K-Nearest Neighbor Algorithm	13
5	JM012	The Development of Web-Based Student Leadership Program Management System for 'Unit Kepimpinan Pelajar'	16
6	JM020	Jom Solat-iVAK: An Interactive Android Mobile Application in Learning Wudhu and Salah for Children with Learning Disabilities	20
7	JM024	Gold Price Forecasting by Using ARIMA	24
8	JM025	Recycle Now: Learning the 3R of Waste Management Through Game-Based Learning	28
9	JM031	Go Travel Application	32
10	JM032	SmartPark	36
11	JM033	iKEN 3D Environment Mobile Application	40
12	JM034	Click Car Services	44
13	JM035	Smart Vector Backpack	47
14	JM036	MY Ole-Ole Application	51
15	JM040	SH Jacket	55
16	JM041	FemaleSafe2Go	59
17	JM042	Avalyn	63
18	JM043	MyConvenient Travel Application	67
19	JM044	Visnis Apps	71
20	JM045	Cyclo Application	74
21	JM046	i-seeuWatch	78

22	JM047	ArenaSport Application	82
23	JM048	Melastomaceae species : A New Potential of Antioxidant Agent	86
24	JM049	Travesy	90
25	JM051	Borneo Food Hunter App	94
26	JM052	NIXON PACK	98
27	JM053	Ecoin Sustainable Smartwatch	102
28	JM054	SpaceBook	105
29	JM061	Nafas Face Mask	109
30	JM062	Handy Scrubby	113
31	JM064	POMCUT (PORTABLE MULTI-COOKING UTENSIL)	116
32	JM065	4 in 1 Tumbler	120
		Understanding Social Media Influence In Reviving The Trishaw	
33	JM072	Or "Beca" As A Popular Tourism Attraction In Melaka.	124
34	JM074	First Aid Stick	127

A Novelty Classification Model for Varied Agarwood Oil Quality Using The K-Nearest Neighbor Algorithm

Aqib Fawwaz Mohd Amidon¹, Siti Mariatul Hazwa Mohd Huzir², Zakiah Mohd Yusoff³, Nurlaila Ismail⁴, and Mohd Nasir Taib⁵

^{1,4} School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM) Shah Alam, 40450 Shah Alam, Selangor, Malaysia, ^{2,3} School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA (UiTM) Johor Branch, Campus of Pasir Gudang, 81750 Masai, Johor, Malaysia, ⁵Malaysia Institute of Transport (MITRANS), Universiti Teknologi MARA (UiTM) Shah Alam, 40450 Shah Alam, Selangor, Malaysia

¹aqibfawwaz.academic@gmail.com, ²mariatulhazwa97@gmail.com, ³zakiah9018@uitm.edu.my, ⁴nurlaila0583@uitm.edu.my, ⁵dr.nasir@uitm.edu.my

Abstract—Agarwood oil, in general, has become a highly advertised and in great demand commodity on the global market. The use of agarwood oil in the manufacturing of fragrances, medicine, and religious rites and festivities makes it even more important. Agarwood oil, on the other hand, never has a systematic grading system. As a result, each producing country must develop its own method for distinguishing between high-quality and low-quality agarwood oil. According to previous research, the current classification method relies solely on expert people in the search for agarwood in the forest. Their services are used to sniff and evaluate each agarwood to determine if it is of high quality or not. Unfortunately, this method has many shortcomings. Among other things, it will cause the health of those involved to be affected, require a long period of time to assess one by one, and certainly contribute to high operating costs. As a result, a new grading system based on artificial algorithms, namely K-Nearest Neighbor algorithms, was established. The value of the percentage of the quantity of significant chemical components contained in the agarwood oil samples is using this method. Therefore, our algorithm has correctly assessed five distinct agarwood oil grading development.

Keywords-agarwood oil, no standard grading, K-Nearest Neighbor, classification model

I. INTRODUCTION

The kind of agarwood employed in this research is "Aquilaria Malaccensis" species. Thymelaeaceae is a family of plants that includes this species. Agarwood is known by a variety of names, including "aloeswood," 'agglewood," 'agaru," "gaharu," and others [1]-[4]. This agarwood is used as a primary component in the creation of fragrances [4],[5]. Due to the nutrients found in it, it is also used as a medication for the treatment of certain disorders. It's also used in a lot of religious events and racing festivities. Agarwood is always in high demand on the worldwide market, which drives up its price, especially for high-quality agarwood [6].

Even so, the agarwood oil grading system still maintains the old way, which is to use human senses such as the eyes to see the level of color concentration of the oil and the nose to assess the level of odor produced by the oil [7]. For that, only experts are able to make this assessment. Of course, experts in each producer country are needed to run the grading process. This approach also has certain disadvantages, such as affecting the health of individuals engaged, taking a long time to finish each grading process, and needing a high level of operational expenditures.

Therefore, a simpler, faster, and more accurate agarwood oil classification model needs to be introduced. Thus, this study focuses on developing a classification model using artificial intelligence algorithm capabilities. The K-Nearest Neighbor (KNN) algorithm was used to make this study successful. Previous studies have found that the percentage of the abundance of significant chemical compounds can be used to make a grade of the dataset of agarwood oil [8].

II. MATERIALS

A. K-Nearest Neighbor Algorithm

In the field of statistics, the K-Nearest Neighbor (KNN) algorithm is a non-parametric supervisory learning method first developed by Evelyn Fix and Joseph Hodges in 1951 [9]-[12]. Subsequently, it was improved by Thomas Cover. This KNN algorithm is used for welding and regression [13]-[16]. In both cases, the input used must consist of the "k" example of the nearest exercise in the data set. The output will depend on whether the KNN is used for classification or regression.

B. Euclidean Distance Concepts

As its names suggest, the Euclidean distance formula calculates the distance between two locations (or the straight-line distance). Assume (x_1, y_1) and (x_2, y_2) are two points on a two-dimensional plane. The formula for calculating Euclidean distance as in (1).

$$d = \sqrt{(x_1 y_1)^2 (x_2 y_2)^2} \tag{1}$$

III. METHODS

In this study, a total of 660 samples of agarwood oil were used. The data was split into five different grades (A+, A, B, C, and D). Grade A+ has 240 data sets, grade A has 90 data sets, grade B has 30 data sets, grade C has 90 data sets, and grade D consists of 210 data sets. After going through the preprocessing data, there are eleven significant chemical compounds for this data set. The chemical compounds were 10-epi- γ -eudesmol, α -agarofuran, β -agarofuran, γ -eudesmol, dihydrocollumellarin, valerianol, ar-curcumene, β-dihydro agarofuran, α-guaiene, allo aromadendrene epoxide, and γ-cadinene.

A. KNN Classification Process Flow

All 660 datasets were taken and divided into two groups of datasets with a ratio of 80:20 as the training dataset and the testing dataset. This division is made using the "Holdout" function. After that, the training dataset was used to develop the KNN classification model. Following the successful construction of the KNN classification model, it was put to the test using dataset testing to check if it could grade correctly. Finally, a performance measure was undertaken based on the test to determine whether to accept or not the classification model. Performance measures carried out include the 5x5 confusion matrix table, accuracy, sensitivity, specificity, and precision.

IV. RESULTS AND FINDINGS

Fig. 1 shows a 5x5 confusion matrix table that is conducted when performing a performance measure on the model. This confusion matrix table has been record based on testing dataset that consist of 20 percent data samples used.

Fig. 1 5x5 confusion matrix table for five qualities of agarwood oil data (testing dataset).

Table 1 shows the results for the percentage of accuracy, sensitivity, specificity, and precision. All obtained 100%. This is because when ranking the confusion matrix assessment, there is not a single pound of sample data from the testing dataset that is misleading between prediction and actual classification. This excellent performance will definitely have a positive impact on calculating accuracy, sensitivity, specificity, and precision.

Performance Measure	Percentage (%)
Accuracy	100
Sensitivity	100
Specificity	100
Precision	100

Fable 1. Percentage of	performance measure
------------------------	---------------------

V. CONCLUSIONS

In conclusion, to make a classification of this agarwood oil sample, we need to understand the characteristics of the significant chemical compounds contained in it first. With that, the selection of the right artificial intelligence algorithm can be made. Each of these artificial intelligence algorithms has its own function. As an example, this KNN algorithm was created to create multiclass classification of data and data regression. Therefore, the KNN algorithm was chosen for this study. Next, the performance measurement process is important to implement. This is because an evaluation of the model needs to be conducted to determine whether it meets the specificat specifications or not in making the classification. The KNN classification of this model has been proven to be able to classify high quality agarwood oil that has more than two quality differences easily, quickly, and accurately based on the performance measure result. The findings of this study will be useful in future research on the development of a classification model or system for the quality of agarwood oil.

ACKNOWLEDGMENT

Under Grant No. 600-IRMI/FRGS 5/3 (224/2019), Institute of Research Management and Innovation (IRMI), Universiti Teknologi MARA (UiTM) Shah Alam, Selangor, and Universiti Teknologi MARA (UiTM) Cawangan Johor, Kampus Pasir Gunang, financed this research, the authors would like to express their gratitude to all of the staff at the School of Electrical Engineering, College of Engineering, Universiti Teknolog MARA (UiTM) Shah Alam, Natural Product Division, Forest Research Institute Malaysia (FRIM), and BioAromatic Research Centre of Excellence (BARCE), Universiti Malaysis Pahang (UMP) for their assistance throughout the research.

REFERENCES

- N. Ismail, M. H. F. Rahiman, M. N. Taib, M. Ibrahim, S. Zareen and S. N. Tajuddin, "Analysis on agarwood vapour using headspace volatile DVB-CAR-PDMS SPME with different sampling time," 2016 7th IEEE Control and System Graduate Research Colloquium (ICSGRC), 2016, pp. 170 – 174.
- [2] K. A. A. Kamarulzaini, N. Ismail, M. H. F. Rahiman, M. N. Taib, N. A. M. Ali and S. N. Tajuddin, "Evaluation of RBF and MLP in SVM kernel tuned parameters for agarwood oil quality classification," 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications (CSPA), 2018, pp. 250-254.
- [3] M. H. Haron, M. N. Taib, N. Ismail, N. A. Mohd Ali and S. N. Tajuddin, "Statistical Analysis of Agarwood Oil Compounds based on GC-MS Data," 2018 9th IEEE Control and System Graduate Research Colloquium (ICSGRC), 2018, pp. 27-30.
- [4] Z. Xiao, S. Jia, H. Bao, Y. Niu, Q. Ke, and X. Kou, "Protection of agarwood essential oil aroma by nanocellulose-graft-polylactic acid," International Journal of Biological Marcomolecules, vol. 183, pp. 743 – 752, July 2021.
- [5] L. Wie, C. Hui-Qin, W. Hao, M. Wen-Li, and D. Hao-Fu, "Natural products in agarwood and Aquilaria plants: chemistry, biological activities and biosynthesis-11," Electronic Supplementary Information (ESI), Natural Product Reports, vol. 38, no. 3, pp. 528 – 565, 2021.
- [6] Sheng Ma, Yunlin Fu, Yingjian Li, Penglian Wie, Zhigao Liu, "The formation and quality evaluation of agarwood induced by the fungi in Aquilaria sinensis," Industrial Crops and Products, pp. 173, 2021.
- [7] M. S. Najib, M. N. Taib, N. A. M. Ali, M. N. M. Arip and A. M. Jalil, "Classification of Agarwood grades using ANN," International Conference on Electrical, Control and Computer Engineering 2011 (InECCE), 2011, pp. 367-372.
- [8] S. Lias, N. A. M. Ali, M. Jamil, M. H. Zainal and S. H. Ab Ghani, "Classification of pure and mixture Agarwood oils by Electronic Nose and Discriminant Factorial Analysis (DFA)," 2015 International Conference on Smart Sensors and Application (ICSSA), 2015, pp. 7-10.
- [9] Y. Sari, M. Maulida, E. Gunawan, and J. Wahyudi, "Artificial Intelligence Approach for BAZNAS Website Using K-Nearest Neighbor (KNN)," 2021 Sixth International Conference on Informatics and Computing (ICIC), pp. 1-4, 2021.
- [10] A. Kumar, A. Verman, G. Shinde, Y. Sukhdeve, and N. Lal, "Crime Prediction Using K-Nearest Neighboring Algorithm," International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), pp. 1-4, 2021.
- [11] C. Ren, L. Sun and Q. Wu, "Study on Density Peaks Clustering Based on Hierarchical K-Nearest Neighbors," 2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), 2019, pp. 664-668.
- [12] M. S. Kadhm, H. Ayad, and M. J. Mohammed, "Palmprint Recognition System Based on Proposed Features Extraction and (C5.0) Decision Tree, K-Nearest Neighbor (KNN) Classification Approaches," Journal of Engineering Science and Technology, vol. 16, no. 1, pp. 816-831, 2021.
- [13] S. A. Dudani, "The distance-weighted k-nearest-neighbor rule," IEEE Transactions on Systems, Man and Cybernetics," pp. 325-237, 1976.
- [14] I. Saini, D. Singh, and A. Khosla, "QRS detection using K-Nearest Neighbor algorithm (KNN) and evaluation on standard ECG databases," Journal of Advanced Research, 2021.
- [15] T. Jayalakshmi, and A. SanthaKumaran, "Statistical normalization and back propagation for classification," International Journal of Computer Theory and Engineering, vol. 3, pp. 1793, 2011.
- [16] K. C. Waghmare, and B. A. Sonkamble, "Music Classification Using Association Rule and K Nearest Neighbor," Journal of Engineering Science and Technology, vol. 16, no. 4, pp. 2876-2887, 2021.