HEXAGONAL PATCH SLIT-BACK ANTENNA FOR WIMAX APPLICATION

This thesis is presented in partial fulfillment for the award of the

Bachelor of Engineering (Hons.) Electronic (Communication)

UNIVERSITI TEKNOLOGI MARA (UITM)

(JULY 2012)

IZZATI SYAZWANI BINTI ZULKIFLI FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR, MALAYSIA

ACKNOWLEDGEMENT

Firstly, I would like to express my deepest gratitude to my supervisor, Puan Norhayati Binti Hamzah, for her guidance and supervision for me during competing this thesis. It is a pleasure to express my gratitude wholeheartedly to my cosupervisors, Puan Hanisah Muhamed Nadzar and Miss Noor Zareena Zakaria for their encouragements, opinions, supports, and suggestions through the work.

I convey special acknowledgement to Ilyano, Illiana, Intan and Khalidah, who are a good team members that were always willing to help and give their best suggestions during the discussion of the project. It would have been a stress and lonely time without them during completing this project. Many thanks to En Khaleem, En Abu Sufian and En Khairil as workers in the laboratory used for completing this project.My project would not have been possible to finish during its completion time without their helps.

I would also like to render my sincerest gratitude to my parents and siblings for their inseparable support and prayers.My father, Zulkifli Bin Yusof was the person that I need to give a special thanks because he teach my learning character and showing me the joy of intellectual pursuit since I was a child. My mother, Khuzaimah Binti Karim also worthy to receive thanks from me for sincerely raised me with her caring and true love.

Finally, I would like to thank everybody who was important to the successful realization of my thesis and please receive my apology because that I could not mention personally one by one of your name.

ABSTRACT

This paper presents the simulation and measurement result of microstrip Hexagonal Patch Slit-back Antenna. It operates at 2.5GHz which is for WiMAX applications. Hexagonal patch slit-back antenna was designed and simulated using Computer Simulation Technology 2009 (CST) software. The proposed antenna was fed by quarter-wavelength transmission length for impedance matching purpose with Defected Ground Structure (DGS) at the background of the antenna. The purpose of designing antenna with defected ground surface is to increase the performance of the antenna. In this project, the performance of the antenna increased in term of return loss by adding a single slit at ground as a defected ground structure. The Hexagonal Patch Slit-back Antenna was fabricated on Fiber Reinforced (FR-4) with dielectric constant of 5.0 and thickness of 1.6mm respectively. The proposed antenna was measured in the laboratory using Vector Network Analyzer (VNA).The performance of the antenna was analyzed in terms of return loss and Voltage Standing Wave Ratio (VSWR). The results show the value of return loss is lower than -20 and Voltage Standing Wave Ratio (VSWR) is lower than 2.

TABLE OF CONTENTS

TITLE		i
APPROV	AL	ii
CANDID	ATE'S DECLARATION	iii
ACKNOV	VLEDGEMENT	v
ABSTRA	СТ	vi
LIST OF	FIGURES	ix
LIST OF	TABLE	xi
LIST OF	SYMBOL AND ABBREVIATIONS	xii
СНАРТЕ	R 1	
INTROD	UCTION	
1.1	INTRODUCTION OF HEXAGONAL PATCH SLIT-BACK ANTENNA	1
1.2	OBJECTIVE	3
1.3	SCOPE OF STUDY	3
1.4	ORGANIZATION	4
СНАРТЕ	R 2	5
LITERA	ΓURE REVIEWS	5
2.1	INTRODUCTION	5
2.2	OVERVIEW OF WIMAX	5
2.3	ADVANTAGES AND DISADVANTAGES OF WIMAX	6
2.3	ANTENNA THEORY	6
2.4	RADIATION OF AN ANTENNA	7
2.5	INTRODUCTION OF MICROSTRIP PATCH ANTENNA	8
2.6	CHARACTERISTICS OF ANTENNA	8
2.6.1 S	tructure	8
2.6.2 P	rinciple of Operation	
2.7	ANTENNA PARAMETERS	
2.7.1	Voltage Standing Ways Patio (VSWP)	11
2.7.2	Directivity	12
2.7.3	Gain	
2.7.5	Impedance Matching	
2.7.6	Radiation Pattern	14
2.8	FEEDING TECHNIQUES	14

2.8.1	Inset Feed	15
2.8.2	Fed with a Quarter-wavelength Transmission Line	15
2.8.3	Coaxial Probe Feed	16
2.8.4	Proximity Coupling Feeds	
2.8.5	Aperture Coupling Feeds	
СНАРТЕ	R 3	
METHOI	OOLOGY	
3.1	INTRODUCTION	19
3.2	FLOW CHART	19
3.3	LITERATURE REVIEW	21
3.4	STUDY CST SOFTWARE	21
3.5	ANTENNA DESIGN	21
3.5.1	Substrate Chosen	22
3.5.2	Patch Antenna Design	22
3.5.3	Ground Plane Design	23
3.5.4	Microstrip feed line design	23
3.5.5	Overall design of Hexagonal Patch Slit-back Antenna	24
3.6	FABRICATION	25
3.7	MEASUREMENT	26
3.7.1	Vector Network Analyzer	27
3.7.2	Antenna Training ystem	27
3.8	ANALYSING DATA	27
СНАРТЕ	R 4	
RESULT	S AND DISCUSSION	
4.1 INTR	ODUCTION	28
4.2 SIMU	LATION RESULTS	
4.2.1 R	eturn Loss	
4.2.2 V	oltage Standing Wave Ratio(VSWR)	29
4.2.3 R	adiation Pattern	
4.3 EXPE	RIMENTAL RESULTS	
4.3.1 R	eturn loss	
4.3.2 V	oltage Standing wave Ratio(VSWR)	
4.3.3 R	adiation Pattern	
СНАРТЕ	R 5	
CONCLU	JSION	
СНАРТЕ	CR 6	
RECOM	MENDATION AND FUTURE WORK	