Universiti Teknologi MARA

Melanoma Skin Cancer Recognition Using Negative Selection Algorithm

Muhammad Rushamir Hakimi Bin Ruslan

Thesis submitted in fulfilment of the requirements for Bachelor of Computer Science (Hons.)
Faculty of Computer and Mathematical Sciences

ACKNOWLEDGEMENT

Thousands of praises and thanks to Allah SWT because of His Almighty and His utmost blessings, this research able to finish within the time duration given.

I am using this opportunity to express my undivided gratitude to everyone who supported me during the completion of this research. I am thankful for everyone that provided me with aspiring guidance, invaluably constructive criticism and advice during the research work. Sincerely grateful to them for sharing their truthful views on several issues related to the project.

Tremendous thanks and appreciation to my supervisor, Siti 'Aisyah bt Sa'dan that always guide me, provided full support in image processing area and report structure and help me to solve several critical problems that occurred during development process. A warm thanks to CSP600 and CSP650 lecturer, Dr Hamidah bt Jantan for her full support and guidance.

A special thank dedicated to my family for their sacrifices in order to see their family member successful in degree study. I would like to thanks all my best friends who always help, support and provide good advices in completing my prototype, report writing and encouraged me to strive towards my goal. Last but not least, I would like to acknowledge with much appreciation to all individual and organization that provided a free access database and information regarding skin cancer and negative selection algorithm that aided me to complete the tasks.

ABSTRACT

This project presents a novel intelligence that inspired by immune system or specifically the Artificial Immune System. The Negative Selection Algorithm has been successfully applied in several application areas such as fault detection, virus detection and data integrity protection. This study proposed and focused on the development of a prototype that uses the Negative Selection Algorithm to classify the input image whether it is belongs to melanoma skin cancer or benign mole. The criteria of the skin image that takes into account are Asymmetric Index, Border Irregularity, Color Invariant and Diameter of the lesion. This technique inspired by the ABCD rule where it is adopted as the standard rule to diagnose the skin cancer. This study has shown how the Negative Selection Algorithm can diagnose the skin cancer based on the input image and extracted data that has been provided. This study has been conducted with 30 data which are the skin images is divided into 20 training and 10 testing data for the proposed algorithm. The result of the evaluation analysis conducted in this study shown that accuracy of the result is 60%, the specificity obtained is 75% and sensitivity obtained is 50%. Hence, the proposed algorithm is capable to classify the skin image whether it is melanoma or benign mole based on the given data. For future enhancement of the prototype such as enhance the features extraction technique and hybrid the existing algorithm with another AIS algorithm can be conducted in order to obtain higher accuracy of the result gained.

TABLE OF CONTENTS

CON	ΓΕΝΤ	PAGE
SUPE	RVISOR'S APPROVAL	ii
STUDENT DECLARATION		
ACKN	OWLEDGEMENT	iv
ABST	RACT	v
TABLE OF CONTENTS		
LIST OF FIGURES		
LIST OF TABLES		
СНАР	TER ONE: INTRODUCTION	
1.1	Background of Study	1
1.2	Problem Statement	3
1.3	Research Objectives	4
1.4	Research Scope	4
1.5	.5 Research Significance	
1.5.1 Community		5
1.3	5.2 Area of Expertise	5
1.6	Research Methodology Framework	5
1.7	Summary	6
СНАР	TER TWO: LITERATURE REVIEW	
2.1	Skin Cancer	7
2.1	1.1 Melanoma Skin Cancer	7
2.	1.2 ABCD Rule of Dermascopy	9
2.1	2.1.3 Conventional Skin Cancer Recognition	
2.2	Related Research on Skin Cancer Recognition	15
2.2	2.1 Skin Cancer Recognition using Mathematical Method	16

2.2.2		Skin Cancer Recognition using Neural Network Algorithm		
2.2	2.3	Skin Cancer Recognition using Support Vector Machine Algorithm	17	
2.3	Art	ificial Immune System	18	
2.3	3.1	History of Artificial Immune System Algorithm	18	
2.3	3.2	The Biology Interpretation of Artificial Immune Systems	19	
2	3.3	The Artificial Immune System Algorithms	20	
2.3	3.4	Negative Selection Algorithm	21	
2.4	Ap	plications of Negative Selection Algorithm	23	
2.4	4.1	Negative Selection Algorithm Applications in Anomaly Detection	24	
2.4	4.2	Negative Selection Algorithm Applications in Image Processing	24	
2.5	Imj	plication of Literature Review	25	
2.6 Conclusion		nclusion	26	
CHAP	TER	THREE: METHODOLOGY		
3.1	Pro	ject Design Overview	27	
3.2	Pha	Phase 1: Preliminary Study		
3.3	Pha	ase 2: Data Acquisition	30	
3.4	Pha	ase 3: System Design & Implementation	32	
3.4	4.1	Data Preprocessing	32	
3.4.2		Feature Extraction		
3.4	4.3	Classification Using Negative Selection Algorithm	37	
3.5	Pha	se 4: Result Analysis & Evaluation	43	
3.6	Pha	ase 5: Documentation	44	
3.7	Sur	nmary	44	
СНАР	TER	FOUR: ANALYSIS AND DISCUSSIONS		
4.1	Pro	totype Conceptual Framework	45	
4.2	Sys	stem Prototype	46	
4.2.1		Features Extraction Prototype	47	
4.2	2.2	Negative Selection Classifier Prototype	50	
4.3	Thr	reshold Value	53	
4.4	Sys	tem Prototype Evaluation	55	
4.5	Sur	nmarv	57	