QUARTER-WAVELENGTH SIDE-COUPLED RING FILTER WITH OPEN STUBS FOR NARROW DUAL-BAND APPLICATION

This thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Honours) UNIVERSITI TEKNOLOGI MARA

NUR AZREEZAN BIN MUHAMAD SNIN Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

In the name of almighty God, I would like to express my sincere appreciation to Dr Mohd Khairul bin Mohd Salleh, who has supervised the project since its commencement in July 2010, for his generous and constructive support, inspiring suggestions and encouragement in all the time of the project.

Colleagues and friends have also contributed massively by giving response to inquiries, presentations and the draft report of the thesis work and also for their effort and cooperative comments.

Last but not least, to my family with all my heart, I express my deepest love for your endurance, positive help and unfailing support throughout the project.

ABSTRACT

A Quarter-wavelength side-coupled ring filter with open stubs has been designed and presented. This filter exhibits narrow dual-band frequency response with dual resonance characteristics with reference frequency response at 1 GHz. This filter was realized and fabricated on FR4 substrate, with dielectric constant of 5.4 and 1.6 mm of thickness. Computer-aided design (CAD) software was used to simulate the ideal circuit and the layout of the filter. The response is controlled by varying the value of impedances of each element. The value of the impedances were converted to the microstrip of lines, in terms of length, width and separation gap. Adjustment of the dimensions were required to attain the good response and then fabricated via standard PCB fabrication technique. The dimension of the simulated response. The measurement results were found to be coherent to the simulation and showed fine separation of passbands with good out-of-band rejection level.

TABLE OF CONTENTS

CHAPTER

PAGE

DECLARATION	i
DEDICATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	vii
LIST OF TABLES	ix
LIST OF ABBREVIATIONS	xiii

1 INTRODUCTION

1.1	Background Study	1
1.2	Problem Statement	2
1.3	Objectives of Study	3
1.4	Scope of Work	4
1.5	Organization of The Study	5

2 LITERATURE REVIEW

2.1	Introduction	6
2.2	Limitation	7

3 METHODOLOGY

3.1	Introduction	10
3.2	Initial Design of Ideal Response	10
3.3	Microstrip Line	17
3.4	Fabrication	24
3.5	Measurement	25

8

4 **RESULT AND DISCUSSIONS**

4.1	Filter Realization	26
4.2	Measured Result	30
4.3	Comparison of Simulated and Measured Response	32

5 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	35
5.2	Recommendations	36

REFERENCES	37
------------	----