

ACKNOWLEDGEMENT

Upon the completion of my final year project, I would like to dedicate this success to all the involved parties. First of all, the person I would like to thank most is my project supervisors, Mrs. Robi'atun Adayiah Awang and Mr. Mohd. Fadhil Sayuti. Without their knowledge and guidance, the completion of this project would be much more difficult. Besides that, they were very helpful and kind in assisting me to obtain relevant sources required for the project.

Besides them, I would also like to thank my other lecturers whose names were not being mentioned here for their assistance throughout the project.

I would like to extend my sincere to our Laboratory Instructors in helping me with supplying the components and spend their time to make sure that the laboratory can be used for students completing their projects.

This work would not have been possible without the endless love, encouragement and support from my beloved family members. I would also like to express my gratitude to my and fellow course-mates who were also involved in giving me some valuable advices. Their views and tips are useful indeed.

ABSTRACT

This paper presents a design of a RF preamplifier at frequency range of 137-138MHz. The preamplifier is designed to boost NOAA satellite's signal and help in eliminating any existing background noise. The pre-amplifier was simulated using Electronics Workbench Multisim 10 software and fabricated on a printed circuit board (PCB) where Orcad Layout Plus is used for the PCB design layout. The results obtained are compared between simulation and measurement. The simulation results show the values of gain and bandwidth are 16.37 dB and 1 MHz respectively. The noise figure is less than 2dB. From the measurement, the preamplifier is recorded to operate at 137.5MHz frequency with 15.75 dB gain, 1.4MHz bandwidth and 1.25 dB noise figure.

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION	iv
DEDICATION	v
ACKNOWLEDGEMENT	vi
ABSTRACT	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	xiv

INTRODUCTION

1

1.1	Background of the project	1
1.2	Problem statement	2
1.3	Objectives of the project	2
1.4	Scope of work	3
1.5	Thesis organization	3

2 THEORY AND LITERATURE REVIEW

2.1	National Oceanic and Atmospheric Administration		4
	(NOA	A)	
2.2	Satelli	te weather image	5
	2.2.1	Satellite ground station system	6
	2.2.2	Receiver description	7
2.3	Radio frequency (RF) preamplifier		9
	2.3.1	Figures of merit	10
		2.3.1.1 Gain	10

		2.3.1.2 Bandwidth	10
		2.3.1.3 Noise figure	11
2.4	Trans	istor preamplifier	13
	2.4.1	Circuit description	14
2.5	2.5 Components		15
	2.5.1	Capacitor	16
	2.5.2	Variable capacitor	17
	2.5.3	Resistor	18
	2.5.4	Air coil inductor	19
	2.5.5	RF choke	20
	2,5.6	Transistor (dual gate MOSFET)	21

3 METHODOLOGY

4

3.1	Process flow overview		22
3.2	Simulation process		24
3.3	Hardw	are development	26
	3.3.1	Hardware implementation	28
		3.3.1.1 Printed Circuit Board (PCB) Layout	28
		3.3.1.2 PCB Layout Ironing	29
		3.3.1.3 PCB Etching	.30
		3.3.1.4 PCB Holes Drilling	30
		3.3.1.5 PCB Soldering	30
3.4	Measur	ement Setting for Testing	32

RESULTS AND DISCUSSION

4.1	Introduction		33
4.2	Simul	Simulation results	
	4.2.1	Gain simulation	35
	4.2.2	Bandwidth simulation	36
	4.2.3	Noise Figure simulation	39
4.3	Measu	arement results	40