DISTRIBUTED RAMAN AMPLIFIER (DRA) FOR DENSE WAVELENGTH DIVISION MULTIPLEXING (DWDM) NETWORKS.

MOHAMED NADZEEM LOKHMAN HAKIM

A thesis submitted in fulfilment of the requirement for the award of the

BACHELOR OF ENGINEERING (HONS) ELECTRICAL

Department of Electrical Engineering

Faculty of Electrical Engineering

Universiti Teknologi MARA

NOV 2010

ACKNOWLEDGEMENTS

In the Name of Allah, the Most Gracious, the Most Merciful.

First of all, I would like to express my greatest gratitude to ALLAH the Almighty, for His help and guidance during the course of life and moment of truth.

I would like to express my appreciation and sincere gratitude to my supervisor, Pn. Mas Izyani Md. Ali for his continual support, endless encouragement and patience towards completing the research and for allowing the chance to work under her guidance, opinion and full support in completing this project. Without her superior knowledge in this field of study, this project might not be done properly. All the kindness and understandings will always be remembered.

A big thanks to all my colleagues from Universiti Teknologi MARA for their helps and encouragement.

My greatest appreciation to very important persons in my life which is my family that give me a lot of moral support and encouragement.

Last but not least, to all others not mentioned but whose help been tremendous, I express my sincere thanks and appreciation. Thank you.

ABSTRACT

This project is to study on Distributed Raman amplifier (DRA) characteristic and the performance for gain control amplification to be applied in the next optical networks by changing the fiber length. From the simulation the optimum fiber length is 50km and the gain is 5.41dB. Next, to study on DRA for Dense Wavelength Division Multiplexing (DWDM) networks characteristic also in terms of gain and noise figure. Modern Dense Wavelength Division Multiplexing (DWDM) optical networks consist of add/drop elements can enhance the flexibility and capacity of the network. Through the careful selection of channel number, wavelength, and power of signal pumps, a greater gain can be produce. From the simulation, 64 DWDM channels were able to achieve maximum gain of 12.2dB with four pump sources. The average power of pump sources used is 140mW. Lastly, 100 nm flatten bandwidth is demonstrated by using 100 channels of pump sources. The combination of DWDM and DRA will produce flatten bandwidth between 1520nm to 1614nm. The maximum gain achieved for this set up is 7 dB and the noise figure is acceptable at 8dB.

TABLE OF CONTENTS

CHAPTER	ITEM	PAGE	
	TITL	i	
	APPR	ii	
	DECI	ili	
	DEDI	iv	
	ACKN	v	
	ABST	vi	
	TABL	vii	
	LIST	X	
	LIST	xii	
	LIST	xiii	
	LIST	xiv	
1	INTR	1	
	1.1	Background	1
	1.2	Statement of Problems	1
	1.3	Research Objectives	2
	1.4	Scope of Study	3
	1.5	Thesis Organization	4
2	LITE	5	
	2.1	Introduction to Optical Amplifier Today	5
	2.2	Raman Amplification in Optical Fibers	6
	2.3	Raman Noise Sources	12
	2.4	Signal to Noise Ratio	13
	2.4.1	Noise Figure	13
	2.5	Principle of Raman Gain and Bandwidth	14
	2.6	Amplifier Characteristic	15

CHAPTER	ITEMS		PAGE
	2.7	Wavelength Division Multiplexing Systems	16
	2.8	Dense Wavelength Division Multiplexing	19
		System	
	2.8	Broadband in Telecommunication	20
3	METH	22	
	3.1	Introduction	22
	3.2	Design Parameters	24
N.	3.2.1	Experiment A-Distributed Raman Amplifier	24
	3.2.2	Experiment B-RA Optimizing Pump Power	25
,		And Frequencies	
	3.2.3	Experiment C-RA 100nm Bandwidth Flatten	26
		Gain	
	3.3	Conclusion	27
4	RESULT AND DISCUSSION		
	4.1	Introduction	28
	4.2	Experiment A-Distributed Raman Amplifier	28
	4.3	Experiment B-RA Optimizing Pump Power	30
		And Frequencies	
	4.4	Experiment C-RA 100nm Bandwidth Flatten	35
		Gain	
	4.5	Conclusion	37
5	CONCI	39	
	5.1	Introduction	39
	5.2	Conclusion	39
	5.3	Future Development	40