CORRELATION ANALYSIS BETWEEN GEOMAGNETIC AND IONOSPHERIC PARAMETER DURING DAY AND NIGHT TIME

Thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons.) UNIVERSITI TEKNOLOGI MARA

SUHAIDAH ZAINUDDIN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR, MALAYSIA

MAY 2010

ACKNOWLEDGEMENT

First and foremost, I would like to state my greatest gratitude to ALLAH S.W.T that gives me an opportunity to be able to complete my final year project and thesis.

In finishing this project, I was in contact with many people, researchers, academicians, and students. They have contributed towards my understanding and thoughts. In particular, I am also very thankful to my project supervisor, Mr. Muhammad Adib b. Haron for her guidance and encouragement during this degree project. I greatly appreciate her care and dedication in constructively criticizing my work, including my thesis. I am also very thankful to Mr. Mohamad Huzaimy Jusoh for his greater helps. Without continued support and interest from them, this project would not have been the same as presented here.

My sincere appreciation also extends to all my fellow friends and others who have provided assistance at various occasions.

Lastly, I am profoundly grateful for my family especially my parents, who always love me, believe in me, and support me, no matter where I am.

Thank you.

ABSRACT

This project describes the correlation of geomagnetic parameters and ionospheric parameter during day and night time. Comparison on both parameters was made during quiet days. Total Electron Content (TEC) is extracted using Global Positioning System (GPS) dual frequency data which in RINEX format. The data was observed at receiver station Universiti Teknologi Mara, Arau (100.3° E 6.5° N). The GPS data was analyzed for 2 hours during day and night time while the analysis on geomagnetic parameters were based on data supplied by Space Environment Research Centre (SERC) Kyushu University, Japan. The station chosen is Cook Town, Australia (-15.48° S 145.25° E). Both data were analyzed on 18 to 21 July 2006. The analysis on both data shows strong correlation on geomagnetic parameters especially H and Z with ionospheric parameter.

TABLE OF CONTENTS

CHAPTER	CONTENTS	PAGE
	ACKNOWLEDGEMENT	ť
	ABSTRACT	fi
	TABLE OF CONTENTS	iii
	LIST OF FIGURES	vi
	LIST OF TABLES	vii
	ABBREVIATIONS	viii
1	INTRODUCTION	1,
	1.1 PROJECT OVERVIEW	1
	1.2 OBJECTIVES	2
	1.3 SCOPE OF PROJECT	2-3
	1.4 THESIS OVERVIEW	.3
2	LITERATURE REVIEW	4
	2.1 INTRODUCTION	4
	2.2 IONOSPHERE	4
	2.2.1 Introduction	5
	2.2.2 The Regions of Ionosphere	6
	2.2.2.1 D Region	6-7
	2.2.2.2 E Region	8
	2.2.2.3 F Region	8-9
	2.2.3 Ionization	9-11
	2.2.4 Summary	12
	2.3 GLOBAL POSITIONING SYSTEM (GPS)	13
	2.3.1 Introduction	13-14
	2.3.2 Dual frequency GPS system	14-15
	2.3.3 Sources of GPS signal error	15-16
	2.3.4 Advantages of using GPS system in TEC	16
	Calculation	

	2.3.5 Explanation of GPS receiver station in	16-17
	Malaysia	
	2.4 TOTAL ELECTRON CONTENT	17
	2.4.1 Introduction	18
	2.4.2 Calculation of slant and vertical TEC	19-20
	2.4.3 TEC mapping function	21-22
	2.4.4 Total Electron Content from GPS	22-23
	2.5 GEOMAGNETIC FIELD	23
	2.5.1 Introduction	23-24
	2.5.2 Importance	25
	2.6 MAGDAS (THE MAGNETIC DATA	25-27
	ACQUISITION SYSTEM)	
	2.7 Kp (PLANETARY INDEX) and Dst INDEX	27
	(DISTURBANCE AMPLITUDE STORM TIME)	
	2.7.1 Kp Index	27-28
	2.7.2 Dst Index	29
3	METHODOLOGY	30
	3.1 INTRODUCTION	30
	3.1.1 Analysis on GPS data	30-31
	3.1.2 Literature review	31
	3.1.3 Collect GPS data	31
	3.1.4 Classification of data	32
	3.1.5 Simulation data using MATLAB	32-33
	Programming	
	3.1.6 Analysis of TECv variation	34
	3.1.7 Plotting bar graph	34
	3.2 ANALYSIS ON MAGDAS DATA	34
	3.2.1 Literature review	35
	3.2.2 Collect GPS data	35
	3.2.3 Classification of data	35-36
	3.2.4 Analysis of H, D, Z, F variation	36
	3.2.5 Plotting bar graph	36