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HIGHLIGHTS  
 

● The stock market is volatile and unpredictable for investor, thus having an accurate forecasting of 

future market environment is essential to minimize losses. 

● Two forecasting models are developed using fuzzy time series (FTS) and autoregressive integrated 

moving average (ARIMA) algorithm to predict the value of share price in the future. 

● With the lowest MAPE, MSE, and RMSE values, ARIMA model outperforms FTS model. 

_____________________________________________________________________________________________ 

 

ABSTRACT  

The stock market has always been a contentious topic in society, and it is a place where economic standards 

are established. The stock market is incredibly unpredictable and turbulent. This means that the shares may 

fluctuate for reasons that are sometimes difficult to understand.  Due to this uncertainty, many investors 

believe the stock market as a risky investment.  Therefore, having an accurate picture of future market 

environment is crucial to minimising losses. Forecasting is a technique of predicting the future based on 

the outcome of the previous data.  There are a wide range of forecasting algorithms, however, this study 

only focuses on these two techniques: Auto Regressive Moving Average (ARIMA) model and Fuzzy Time 

Series (FTS) Model. The goal of this study is to evaluate and compare the effectiveness of the ARIMA model 

and the FTS model in predicting sample data of stock prices of Top Glove Corporation Berhad since this 

company is the largest glove supplier in the world and plays a significant role in the Covid-19 global 

pandemic crisis. The error measures that were taken into consideration consist of Root Mean Square Error 

(RMSE), Mean Square Error (MSE), and Mean Absolute Percentage Error (MAPE). These measurements 

were computed numerically and graphically using a statistical programme called EViews.  The outcome 

shows that the ARIMA model performs better than the FTS model in terms of forecasting accuracy and 

provides the lowest values of MAPE, MSE, and RMSE, which are 10.58757, 0.926354, and 0.962473, 

respectively. 

 

Keywords: Autoregressive Integrated Moving Average (ARIMA), Fuzzy Time Series (FTS), Stock Price, 

Share Price, Forecasting,    
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INTRODUCTION 

The term stock price refers to the current price that a share of stock is trading for on the market.  When 

shares of a publicly traded firm are issued, their value is assigned at a price that, ideally, represents the 

worth of the company itself.  The intrinsic value of the stock could increase or decrease.  Finding equities 

that are currently undervalued is the aim of most stock investors. 

 

The stock market is very volatile and extremely unpredictable.  This means that the shares can go up and 

come down for reasons that sometimes cannot be explained.   Due to this unpredictability, the stock market 

is considered a risky prospect for many investors.  There are many factors can affect the stock prices such 

as supply and demand, interest rates, exchange rates fluctuations, political upheaval, natural calamities and 

much more (Csiszar, 2020).  All these factors can affect the yields of investors.  However, if the market is 

studied in detail and investors have a clear understanding of the market, they can decide the best time to 

buy or sell stock and earning good return.  The best prediction of timing the stock is the key to successful 

investing.  Various types of models have been introduced by researchers to anticipate stock prices such as 

the Autoregressive Integrated Moving Average (ARIMA), Residual Income Model (RIM), Integrated 

Artificial Neural Network (ANN), Long Short-Term Memory (LTSM), and Fuzzy Time Series (FTS).  Each 

of these mathematical models has their own set of benefits and drawbacks.  This study aims to make a 

comparison between the performance of the ARIMA model and the FTS model in predicting stock prices 

of Top Glove Corporation Bhd.  

 

Previous Research on ARIMA model and FTS model 
 
Time series analysis is a specific way of analyzing a sequence of data points collected over an interval of 

time.  Data points are recorded at consistent intervals over a set period of time.  Time series analysis is 

important in various fields such as economics, social science, epidemiology, medicine and many more. It 

can be used for forecasting, which is predicting future data or likelihood of future events based on historical 

data. 

 

In a study conducted by Alzahrani, Aljamaan, and Al-Fakih (2020), four time-series models are applied, 

namely Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA), and 

ARIMA models to find the best fit model.  The main purpose of the study is to observe and forecast the 

spread of Covid-19 in Saudi Arabia by using historical data of daily cases. The study concluded that the 

most suitable model to be applied for prediction purposes is ARIMA. It is proved by evaluating the root 

mean square error (RMSE), root mean squared relative error (RMSRE), mean absolute percentage error 

(MAPE), mean absolute error (MAE), and coefficient of determination (R2). The ARIMA model was also 

utilised by Sahai, Rath, Sood, and Singh (2020) to forecast Covid-19 cases in five nations: Brazil, Russia, 

the United States, Spain, and India.  The results showed that ARIMA models portrayed a good accuracy 

for Covid-19 cases in those five countries and gave benefits to the governments of these countries to prepare 

better strategies in managing the pandemic during critical period. 

 

According to Phan and Nguyen (2020), time series models like Autoregressive Integrated Moving Average 

(ARIMA) is most efficient when modeling linear time series forecasting but less efficient for non-linear 

models. Therefore, a combination of two methods, namely ARIMA and machine learning (ML), to build a 

water level forecasting model has been proposed by authors. The results proved that a hybrid model 

provides a better accuracy compared to forecasting using a single model. In conclusion, hybridizing a linear 

and a non-linear time series model produces robust forecasting results. 

 

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Computing Research and Innovation (JCRINN) Vol. 7 No.2 (2022) (pp366-378) 
https://jcrinn.com :  eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.332 

 

 

Copyright© 2022 UiTM Press. This is an open access article licensed under CC BY-SA 

https://creativecommons.org/licenses/by-sa/4.0/ 
 

368 

 

Specifically for predicting stock prices, Kumar Meher et al. (2021) used the ARIMA Model to anticipate 

the share prices of pharmaceutical companies in India. The findings of their study revealed that different 

share price businesses have varying levels of trustworthiness. For example, Sun Pharmaceutical's prediction 

between the actual and anticipated share prices appears to be more dependable than Dr Reddy Laboratories. 

Furthermore, they also discovered that the ARIMA model might be more trustworthy with a higher value 

of R and modified R-squared if it is constructed with fewer periods. 

Another approach for time series analysis is Fuzzy Time Series (FTS). According to Zadeh (1965) who was 

the first introduced the fuzzy set theory, this theory offers a wide range of scientific applications. A Fuzzy 

Time Series (FTS) approach based on fuzzy set theory was introduced as an alternative to the traditional 

time series models. Zhang et al. (2010) stated in their study that people could solve forecasting difficulties 

using FTS that combines people's subjective attitudes and objective history values.  Their study incorporates 

FTS into crude oil price predictions for the short term. They looked at West Texas Intermediate oil and 

utilized the root mean square error method to assess the performance of their method and their findings 

show that FTS can produce good forecast results.   

 

Jilani & Burney (2008) studied a basic time-variant fuzzy time series forecasting algorithm. The suggested 

method employs a heuristic approach to define frequency-density-based partitions of the universe of 

discourse. They developed a fuzzy metric to apply frequency-density-based partitioning. The forecast is 

calculated using a trend predictor in the proposed fuzzy metric. They stated that this new technology is 

being used to forecast the enrolments of University of Alabama. The result demonstrated that the suggested 

method is more accurate than other fuzzy time series methods.  Lee & Suhartono (2012) proposed a new 

weighted fuzzy time series model to increase forecast accuracy in seasonal data, based on the Exponential 

Smoothing approach and graphical order selection in their work. Their research demonstrates how the 

graphical order fuzzy relationship may be used to quickly determine the best order for fuzzy time series.   

 

FTS models have been used to forecast stock market prices because it can extract pertinent information 

from big data sets without relying on any model assumptions. It also can be used to predict individual stock 

prices, establish the trend of the stock market based on the anticipated open, high, low, and close values, 

and help traders decide whether to buy or sell a stock. (Hwang & Oh, 2010).  Referring to all research 

findings from earlier studies, this study is created with the goal of contrasting ARIMA and FTS in order to 

evaluate the trend movement of Top Glove Corporation Berhad, the largest glove supplier in the world and 

a key player in the Covid-19 global pandemic catastrophe. 

 

METHODOLOGY  

This study will analyze the share prices of Top Glove Corporation Bhd from January 2017 to August 2021 

by using ARIMA and FTS. Top Glove Corporation Bhd is a healthcare company that manufactures and 

sells medical equipment and supplies. This company makes, research, trades gloves and rubber items, and 

also provides E-commerce services for healthcare supplies and glove trade.  The data was gathered from 

Bursa Market Place, a website providing real-time stock quotes and market news in Malaysia. 

 

Autoregressive Integrated Moving Average (ARIMA) 
 

ARIMA is a forecasting algorithm that is most widely used in time series analysis.  The development 

process of an ARIMA model is divided into three stages: Model Identification, Model Estimation, and 

model validation (Lazim, 2005).  ARIMA has three inputs which are p, d, and q, and is written in general 

form as ARIMA(p,d,q).  p represents the number of lag observations; d is the degree of difference; q 

represents the size of the moving average. The differencing process is required to make the data stationary 
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if it is not already stationary.  This process will remove the trend pattern from the actual data.   The number 

of times the data must differ before they become stationary is indicated by the order of differencing.  The 

mathematical formula as follows: 

∆(∆𝑦𝑡) =  ∆𝑦𝑡 − ∆𝑦𝑡−1, 
                                        = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2), 
                                        = 𝑦𝑡 - 2𝑦𝑡−1+ 𝑦𝑡−2,                       (1) 

 

where ∆𝑦𝑡  is the number of differences.  Backward shift operator is a useful notation used when 

differentiating.  The following formula uses operator B to represent the number of backward steps. 

 

First-order differencing: 

 ∆𝑦𝑡 =  𝑦𝑡 − 𝑦𝑡−1,             
                                                            = (1 − 𝐵)𝑦𝑡 .                                            
Second-order differencing: 

∆(∆𝑦𝑡) =  ∆𝑦𝑡 − ∆𝑦𝑡−1, 
                          = (𝑦𝑡 − 𝑦𝑡−1) − (𝑦𝑡−1 − 𝑦𝑡−2), 

                          = 𝑦𝑡 - 2𝑦𝑡−1+ 𝑦𝑡−2, 

              = (1- 2𝐵 +𝐵2) 𝑦𝑡 or  (1 − 𝐵)2𝑦𝑡.               (2) 

The Autoregressive (AR) model 

                      𝑦𝑡 =  𝜇 + ∅1𝑦𝑡−1 + ∅2𝑦𝑡−2 + ⋯ + ∅𝑝𝑦𝑡−𝑝 + 𝜀𝑡 ,                    (3) 

where 𝜇 and ∅ are constant parameters, 𝑦𝑡 = current value, 𝑦𝑡−𝑝 = 𝑝𝑡ℎ is the order of lagged current 

value, 𝜀𝑡 = error term. 

 

By backward shift operator: 

                        (1 − ∅1𝐵 − ∅2𝐵2 − ⋯ − ∅𝑝𝐵𝑝)𝑦𝑡 = 𝜇 + 𝜀𝑡 .                       (4) 

 

The Moving Average (MA) model 

                     𝑦𝑡 =  𝜇 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑝𝜀𝑡−𝑝 + 𝜀𝑡 ,                       (5) 

where 𝜇 = mean, 𝜃 is the moving average, 𝜀𝑡 = error term. 

 

By backward shift operator: 

                          𝑦𝑡 = 𝜇 + (1 − 𝜃1𝐵 − 𝜃2𝐵2 − ⋯ − 𝜃𝑞𝐵𝑞)𝜀𝑡.                      (6) 

 

The general algorithm of ARIMA (p, d, q), where d is the number of times the 𝑦𝑡 needs to be different to 

achieve stationary.  

 𝑤𝑡 = 𝜇 + ∅1𝑤𝑡−1 − 𝜃1𝜀𝑡−1 + 𝜀𝑡, 

where 𝑤𝑡 =  𝑦𝑡 −  𝑦𝑡−1, the first difference or can be written as 

(1 − ∅1𝐵)𝑤𝑡 =  𝜇 + (1 − 𝜃1𝐵)𝜀𝑡 .                                       (7) 

Model Identification 

 

The dataset is first split into estimation and evaluation parts. Afterward, the line charts of the autocorrelation 

function (ACF), and the partial autocorrelation function (PACF) are plotted to observe the stationary 

behaviour and identify at least five versions of the ARIMA general model that are most appropriate. 
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 ACF PAC

F 

Model type 

1

. 

Decay Spike

s 

AR(p) ; p is the number of spikes in the PACF. 

2

. 

Spike

s 

Decay MA(q); q is the number of spikes in the ACF. 

3

. 

Spike

s 

Spike

s 

ARMA(p, q); p and q are the number of spikes in the PACF and 

ACF.  
Table 1:  Identifying the ARIMA model 

 

     

Model Estimation 

By comparing the results of AIC, BIC, Hannan-Quinn and Durbin-Watson, adjusted R squared, MSE, and 

White Noise, the most suited model of ARIMA(p,d,q) can be selected.  Then the model with optimal 

performance is chosen based on the error measurements, namely the Mean Absolute Percent Error (MAPE), 

Root Mean Square Error (RMSE), and Mean Square Error, choose the optimal model (MSE).  The 

following specific criteria were taken into account: i) Relatively small of BIC (Bayesian or Schwarz 

Information Criterion), ii) Relatively small standard error of the regression (SE of regression), iii) 

Relatively high of adjusted R2 and iv) Q-statistics and correlogram with no significant pattern in the 

autocorrelation functions (ACFs) and partial autocorrelation functions (PACFs) of the residuals, which 

means the residual of the selected model is white noise. 

 
Fuzzy Time Series (FTS) Using Cheng’s Model Algorithm 

Step 1: Define the discourse universe and rule abstraction intervals. The discourse universe can be 

characterized as follows: 𝑈: [minimum value, maximum value]. If the occurrence of linguistic intervals is 

greater than the average occurrence of all linguistic intervals, these intervals must be separated to achieve 

high forecasting accuracy. Sturges formula can be used to calculate the number of linguistic intervals w: 

 

𝑤 = 1 + 3.322𝑙𝑜𝑔 (𝑛)                                             (8) 

 

While the formula below can be used to calculate the length of linguistic intervals,  

 

                                       
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒−𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒

𝑛
                         (9) 

where n is the total number of observations. 

 

Step 2: Create an associated fuzzy set (linguistic value) for each observation in the training dataset. The 

fuzzy sets 𝐴1, 𝐴2,..., 𝐴𝑘 for the universe of discourse are defined in this stage by the Sturges formula, where 

the value of 𝑎𝑖𝑗 denotes the grade of membership of 𝑢𝑖𝑗 in fuzzy set 𝐴𝑖, where 𝑎𝑖𝑗 ∈ [0,1] , 1 ≤ 𝑖 ≤ 𝑘 and 

1 ≤ 𝑗 ≤ 𝑚. This process will determine the degree to which each stock price belongs to each 

𝐴𝑖(𝑖 = 1, … , 𝑚). If the stock price's maximum membership is less than the fuzzified stock price 𝐴𝑘, then it 

is labelled as follows.( Chen, 1996) 

𝐴1 =
𝑎11

𝑢1
+

𝑎12

𝑢2
+ ⋯ +

𝑎1𝑚

𝑢𝑚
, 

𝐴2 =
𝑎21

𝑢1
+

𝑎22

𝑢2
+ ⋯ +

𝑎2𝑚

𝑢𝑚
, 

… 
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                                                             𝐴𝑘 =
𝑎𝑘1

𝑢1
+

𝑎𝑘2

𝑢2
+ ⋯ +

𝑎𝑘𝑚

𝑢𝑚
.              (10) 

Step 3: Establish fuzzy relationships and fuzzification. Two consecutive fuzzy sets, 𝐴𝑖(𝑡 − 1) and 

𝐴𝑗(𝑡) can be combined into a single FLR as 𝐴𝑖 → 𝐴𝑗. 

 

Step 4: Create an FLRG for each FLR. FLRG can be formed by grouping FLR with the same LHSs. 𝐴𝑖 →
𝐴𝑗, 𝐴𝑖 → 𝐴𝑘, 𝐴𝑖 → 𝐴𝑚,  can be grouped as 𝐴𝑖 → 𝐴𝑗, 𝐴𝑘, 𝐴𝑚. A fluctuation-type matrix will be constructed 

by all FLRs. 

 

Step 5: Assign a weight to each item. The fluctuation-type matrix from step 4 is further standardized to 

𝑊𝑛(𝑡). The standardized weight matrix equation should be used to normalize the weight matrix: 

𝑊𝑛(𝑡) = [𝑊′
1, 𝑊′

2, … , 𝑊′
𝑗] = [

𝑊1

∑𝑖
𝑘=1 𝑊𝑘

,
𝑊2

∑𝑖
𝑘=1 𝑊𝑘

, … ,
𝑊𝑘

∑𝑖
𝑘=1 𝑊𝑘

]            (11) 

 

Step 6: Multiply the weight matrix, 𝑊𝑛(𝑡 − 1), by the defuzzified matrix, 𝐿𝑑𝑓(𝑡 − 1) to get the initial 

forecast value. The median of each linguistic interval is the entry of the defuzzified matrix, therefore 𝐿𝑑𝑓 =

[𝑚1,𝑚2, … , 𝑚𝑘] is defined, where 𝑚𝑘 is the median of each linguistic interval. This equation below can be 

used to calculate the initialization forecast:  

 

                         𝐹𝑡 = 𝐿𝑑𝑓(𝑡 − 1). 𝑊𝑛(𝑡 − 1)                                           (12) 

 

Step 7: Calculate the value of the adaptive forecast specified in this equation: 

𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡(𝑡) = 𝑝(𝑡 − 1) + ℎ∗[𝐹(𝑡) − 𝑝(𝑡 − 1)],                 (13) 

 

with 𝑝(𝑡 − 1) ; the current stock index at time t-1, F(t) is the initial forecasting value from the equation in 

step 6, and adaptive forecast (t) is the convincing forecasting value for the future stock price (t). 

 

FINDINGS AND DISCUSSIONS 

Data Analysis with ARIMA Model 
 
Visual inspection of the time series plots reveals some patterns such as trends, seasonal variations, and 

cyclical changes. Therefore, a transformation is required to make the time series data stationary.  After the 

first differencing, the time series data appears to be stationary at first glance. Then, a formal technique 

known as the Augmented Dickey-Fuller (ADF) test is used to verify the stationarity of the time series data.  
Table 2: Augmented Dickey-Fuller Test for the share price of Top Glove Corporation 

 
 

Table 2 shows the outcomes of this test, which was conducted using EViews. A 5% level of significance 

was used to test this hypothesis. The probability of the ADF test statistic is 0.0017, which is less than the 

critical value of 0.05 for the first-order difference. This indicates that the data become stationary after first 

differencing. 
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Figure 1 shows the Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) of 

the data after performing the first differencing. There is one spike in the ACF at lag 1, and the value changes 

faster at lag 2, which degrades to almost zero quickly at lag 3. For PACF, there is one spike at lag 1, and 

also have a decaying pattern as ACF. A series is said to be stationary if it does not show growth or decline 

over time which the data series does not indicate any trend component (Lazim, 2005). Therefore, the data 

is now stationary. In Figure 1, there is one spike in the ACF at lag 1, and there is one spike in the PACF.  

These features suggest ARIMA (1,1,1) as an initial model.  As this model might not be the best fit, other 

possible models are identified by considering every possible combination of ‘p’ and ‘q’ which is closest to 

ARIMA (1,1,1). As a result, the following three models have been chosen and identified; ARIMA(0,1,0), 

ARIMA (0,1,1) and ARIMA (1,1,0).  EVIEWS are used again to calculate the non-seasonal AR and MA 

parameter estimates and the results are shown in Table 3. 

 

 
 

Figure 1: ACF and PACF of Share Price Data 

 
Table 3: ARIMA models comparison 

 

 ARIMA(1,1,1

) 

ARIMA(0,1,0) ARIMA(0,1,1) ARIMA(1,1,0) 

AIC 2.930649 2.954272 2.914298 2.891614 

BIC 3.097827 2.996067 3.039681 3.016997 

Hannan – Quinn 2.991526 2.96941 2.959955 2.937271 

Durbin Watson 1.943608 1.124702 1.869034 2.002893 

R squared (adjusted R squared) 0.097460 0.000000 0.085436 0.107317 

S.E. of regression 0.994896 1.047235 1.001501 0.989448 

White Noise Yes Yes Yes Yes 

 

Based on result in Table 3, the residuals of all models are white noise, meaning that there are no significant 

autocorrelation coefficients, and no partial autocorrelation coefficients exist (Lazim, 2005). The ARIMA 

(1,1,0) is considered a better fit among all other models because it has the lowest value of AIC, BIC, 

Hannan-Quinn, and SE of regression. In addition, the value of its R-squared is also highest among all the 

suggested models. Thus ARIMA (1,1,0) is selected to be used in predicting the share price of Top Glove as 

shown in Figure 2. 
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Figure 2: The graph of actual and forecasted data 

 

The mean squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error 

(RMSE) values provided by the ARIMA model are 0.926354, 10.58757 and 0.962473, respectively. 

 
Data Analysis with FTS Model 
 
The value of discourse universe or rule abstraction intervals for the data are as follows:       

                                                        𝑈: [minimum value, maximum value] 

U: [2.31; 24.85] 

Example calculation of sub-interval for 𝑈1: 2.51125 – 2.31 = 0.20125 

Example calculation of median for 𝑈1 : 
2.31+2.51125

2
= 2.410625 .  Overall values for sub-interval and 

median are shown in Table 4. 
Table 4: Linguistic Interval Partition 

 

Linguistic Interval 
Occurrenc

e  

Conditio

n  

Sub 

interval  
Median  

𝑈1 = [2.31;  2.51125] 5 Fifth 0.20125 
2.41062

5 

𝑈2

= [2.51125;  2.7125] 
4 Fifth 0.20125 

2.61187

5 

𝑈3

= [2.7125;  2.91375] 
1 Fifth 0.20125 

2.81312

5 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

𝑈20 = [15.19;  18.41] 0 First 3.22 16.8 

𝑈21 = [18.41;  21.63] 0 First 3.22 20.02 

𝑈22 = [21.63;  24.85] 2 First 3.22 23.24 

 

The number of intervals formed can be used to determine linguistic values during the fuzzification stage 

depending on the effective interval obtained. Table 5 shows the result of the fuzzification using Cheng 

Model notated in linguistic numbers. 
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Table 5: Fuzzification and FLR 

 

Mont

h 
Date 

Share 

price 

Fuzzificatio

n 

Fuzzy Logic 

Reasoning(FLR) 

1 
1/1/201

7 
2.44 A1 - 

2 
1/2/201

7 
2.36 A1 𝐴1 → 𝐴1 

3 
1/3/201

7 
2.36 A1 𝐴1 → 𝐴1 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

54 
1/6/202

1 
4.68 A12 𝐴13 → 𝐴12 

55 
1/7/202

1 
3.98 A9 𝐴12 → 𝐴9 

56 
1/8/202

1 
3.81 A8 𝐴9 → 𝐴8 

 

Next, Fuzzy Logical Relationship Group (FLRG) is performed by grouping fuzzy sets with the same current 

state into one group in the next state, as shown in Table 6. 

Table 6: Fuzzy Logical Relationship Group (FLRG) 
 

Fuzzificatio

n 
FLRG 

Number of 

relations 

A1 A1, A2 2 

A2 A2, A3 2 

A3 A5 1 

. 

. 

. 

. 

. 

. 

A14 A10, A13, A14, A15 4 

A15 
A12, A14, A15, A16, 

A17 
5 

A16 A15,A19 2 

A17 A13, A16, A17 3 

A18 - 0 

A19 A19, A22 2 

A20 - 0 

A21 - 0 

A22 A17, A22 2 

 

There are two stages involved in the fuzzy time series forecasting process. The first stage is finding the 

middle value for each period, and the second stage is calculating the predicted values. Table 7 shows the 

defuzzification result obtained using FLRG.  The calculation of the initial forecast value (Yt) is as follows:  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (𝑌𝑡) = 𝑡𝑜𝑡𝑎𝑙 𝑜𝑓 𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 × 𝑚𝑒𝑑𝑖𝑎𝑛 

For example, for 𝑌2 =  
4

5
× 2.410625 +

1

5
 × 2.611875 = 2.450875,  
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where the weight matrix of 𝑊1,1 is  
4

5
 and 𝑊1,2 is 

1

5
. The 2.410625 and 2.450875 are the values of the 

median for A1 and A2. 

 

𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡
= 𝑠ℎ𝑎𝑟𝑒 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ 𝑏𝑒𝑓𝑜𝑟𝑒 + (𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒(0.2)
∗ (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑚𝑜𝑛𝑡ℎ − 𝑠ℎ𝑎𝑟𝑒 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑚𝑜𝑛𝑡ℎ 𝑏𝑒𝑓𝑜𝑟𝑒)) 

 
Table 7: Defuzzification of Forecasting Share Price 

 

Date Share Price 

(Xt) 

Fuzzification Initial 

Forecast(Yt) 

Adaptive 

Forecast 

(Xt-Yt)^2 Abs 

(Xt-Yt)/Xt*100 

1/1/2017 2.44 A1     

1/2/2017 2.36 A1 2.450875 2.442175 0.006753 3.481991525 

1/3/2017 2.36 A1 2.450875 2.378175 0.00033 0.770127119 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

  

1/6/2021 4.68 A12 4.792083333 4.782417 0.010489 2.188390312 

1/7/2021 3.98 A9 4.909479167 4.725896 0.556361 18.74110134 

1/8/2021 3.81 A8 3.819375 3.947875 0.01901 3.618766404 

Error MSE 6.441943 

RMSE 2.538098 

MAPE 13.87547816 

 

The actual data is compared with the forecasted share price, as shown in Figure 3. This Cheng method has 

a weighting value known as an additive value, and its range varies from 0 to 1. This study uses an adaptive 

value of 0.2 because it provides the best predictions. 
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Figure 3: Comparison plot of actual data and forecasted share price  

As a result, the mean absolute percentage error (MAPE), mean square error (MSE), and root mean square 

error (RMSE) values are 13.87547816, 6.441943, and 2.538098, respectively.  The comparison of error 

measures for predicting share price using the ARIMA model and Fuzzy Time Series is shown in Table 8.  

The values of error measures of the ARIMA model are less than the FTS model for all three measurements. 

Consequently, in order to anticipate the share price of Top Glove Corporation, the ARIMA model performs 

better than the Fuzzy Time Series model. 

 
Table 8: The Comparison MAPE, MSE, and RMSE on Forecasting Methods to Predict Share Price  

 

Method MAPE MSE RMSE 

ARIMA Model 10.58757 0.926354 0.962473 

Fuzzy Time Series 13.87547816 6.441943 2.538098 

 

CONCLUSION AND RECOMMENDATIONS  

Based on the discussion and results of the above comparative analysis of the Autoregressive Integrated 

Moving Average (ARIMA) model and the Fuzzy Time Series (FTS) model in forecasting the stock price 

of Top Glove Corporation, it can be concluded that the ARIMA model outperforms the FTS model in terms 

of forecasting accuracy and produces smaller mean absolute percentage error (MAPE), mean squared error 

(MSE), and root mean squared error (RMSE) values. 

There are a variety of approaches for comparing and determining which method is the best for forecasting. 

To get more precise findings, various algorithms may be used to train the projected value. Therefore, future 

researchers can utilise and evaluate any sample data by using various forecasting techniques such as the 

Residual Income Model (RIM), Integrated Artificial Neural Network (ANN), Long Short-Term Memory 

(LTSM), and many more to get a comprehensive overview of all methods in terms of accuracy and able to 

choose the most effective forecasting approach. 
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