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HIGHLIGHTS 
 

● Fuzzy Laplace Transforms applied to analyze performance measures. 

● A non-markovian fuzzy queuing system FM/FG/1. 

● Queuing systems models play an important role in computers systems implementation 

● The performance measures of a non-markovian queue in a fuzzy environment. 

● How to apply fuzzy transforms in the evaluation of the measures. 

_____________________________________________________________________________________________ 

 

ABSTRACT 

Laplace transforms play an essential role in the analysis of classical non-Markovian queueing systems. The 

problem addressed here is whether the Laplace transform approach is still valid for determining the 

characteristics of such a system in a fuzzy environment. In this paper, fuzzy Laplace transforms are applied 

to analyze the performance measures of a non-Markovian fuzzy queueing system FM/ FG/1. Starting from 

the fuzzy Laplace transform of the service time distribution, we define the fuzzy Laplace transform of the 

distribution of the dwell time of a customer in the system. By applying the properties of the moments of this 

distribution, the derivative of this fuzzy transform makes it possible to obtain a fuzzy expression of the 

average duration of stay of a customer in the system. This expression is the fuzzy formula of the same 

performance measure that can be obtained from its classical formula by the Zadeh extension principle. The 

fuzzy queue FM/ FE_k /1 is particularly treated in this text as a concrete case through its service time 

distribution. In addition to the fuzzy arithmetic of L-R type fuzzy numbers, based on the secant 

approximation, the properties of the moments of a random variable and Little's formula are used to compute 

the different performance measures of the system. A numerical example was successfully processed to 

validate this approach. The results obtained show that the modal values of the performance measures of a 

non-Markovian fuzzy queueing system are equal to the performance measures of the corresponding 

classical model computable by the Pollaczeck-Khintchine method. The fuzzy Laplace transforms approach 

is therefore applicable in the analysis of a fuzzy FM/FG/1 queueing system in the same way as the classical 

M/G/1 model. 

 

Keywords: Fuzzy Laplace Transforms, Erlang-k Service, Fuzzy Arithmetic, Performance Measures, 

Defuzzification. 
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INTRODUCTION 

Today, no one is unaware of the crucial role played by the modelling of queueing systems in the 

implementation of computer systems, telecommunication systems, etc. 

A queuing system is often described as a circuit in which a client who, on arrival, finds the server(s) busy, 

decides: 

● Or wait for a random period until it is served to leave the circuit; 

● Or to go away and come back to request the service after a random time; 

● Or to leave once and for all. 

Several researches have already successfully analysed different types of classical queues and derived 

performance measures (Babu, P. S., Kumar, K. S., & Chandan, K. (2022).). 

 

When the descriptor parameters of the system are vague and imprecise, it is called a fuzzy queueing system, 

usually represented by the letter 𝐹This is usually represented by the letter "Fuzzy". 

Much work has already been done to analyse these types of queues based on fuzzy set theory. This is 

particularly the case for Markovian fuzzy queuing systems 𝐹 M/ 𝐹 M/c and the product-form fuzzy 

queueing network. The main results of this work can be found in (Fatoumata, Y., Adnane, A., & Ataoua, 

Z. (2021).). 

 As for non-Markovian fuzzy models such as 𝐹 M/ 𝐹 G/1, 𝐹 G/ 𝐹 M/1 ..., the literature is not yet sufficiently 

extensive to our humble knowledge. Among these rare works, we quote for example of which would be the 

most recent to our humble knowledge (Al-Kridi, K., Anan, M. T., & Zeina, M. B. (2018).). 

 

Most of these researchers have based their analyses on the method of mathematical optimization programs 

PNLP (Parametric Non-Linear Programming), combining both the Zadeh Extension Principle and the 

Arithmetic of 𝛼-and intervals (Patel, K. R., & Desai, N. B. (2017).). 

 

Others have applied and shown that the L-R method is the fastest and most flexible method to analyze the 

FM/FEk/1 model (Çitil, H. G. (2019).). 

In this article, we asked the question of how to calculate the performance measures of a fuzzy waiting 

system 𝐹 M/ 𝐹 G/1 using the fuzzy Laplace transform approach in steady state.  

 

Our hypothesis is that the Laplace transform method would remain valid for analyzing both classical and 

fuzzy non-Markovian queue performance measures. 

Like the classical model, our methodology consists in calculating these measures from the fuzzy Laplace 

transforms of the distribution of the residence (waiting) times of a customer in the system (the queue) (Gong, 

Z., & Hao, Y. (2019).). 

 

This text is organized as follows: Section 2 covers the preliminaries, Section 3 deals with fuzzy Laplace 

transforms starting with the notion of fuzzy functions. Section 4 is devoted to the fuzzy model 𝐹 M/ 𝐹 G/1. 

The concrete case where 𝐺 = 𝐸𝑘 is discussed with a numerical example to validate the method. Finally, 

section 5 is reserved for the conclusion that ends the text (Chen, G., Liu, Z., & Zhang, J. (2020).). 

 

PRELIMINARIES 
 

Basic concepts 
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Definition 1 (Fazlollahtabar, H., & Gholizadeh, H. (2019).): Let X be a classical set called universe. A 

fuzzy subset �̃� of X is defined by a membership function 𝜇�̃� of X in [0, 1] such that: 

𝜇�̃�(𝑥) = {0                       𝑖𝑓 𝑥 ∉ 𝐴  (𝑛𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙) 𝑟 ∈]0, 1[          𝑖𝑓 𝑥 ∈ 𝐴 (𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦) 1                      𝑖𝑓 𝑥 ∈
𝐴  (𝑡𝑜𝑡𝑎𝑙𝑙𝑦)                             (1) 

The essential characteristics of a fuzzy subset �̃� are the 𝛼-cuts �̃�𝛼the support 𝑠𝑢𝑝𝑝(�̃�)the height ℎ(�̃�) and 

the core 𝑛𝑜𝑦(�̃�) defined as follows: 

�̃�𝛼 = {𝑥 ∈ 𝑋, 𝜇�̃�(𝑥) ≥ 𝛼 }                                             (2) 

𝑠𝑢𝑝𝑝(�̃�) = {𝑥 ∈ 𝑋, 𝜇�̃�(𝑥) > 0}                                   (3) 

ℎ(�̃�) = {𝜇�̃�(𝑥), 𝑥 ∈ 𝑋}                                           (4) 

𝑛𝑜𝑦(�̃�) = {𝑥 ∈ 𝑋, 𝜇�̃�(𝑥) = 1}                                     (5) 

 

The �̃�𝛼 are also called parametric representations of �̃�. 

 

Definition 2 (Fazlollahtabar, H., & Gholizadeh, H. (2019).). : A fuzzy subset �̃� is said to be normal if 

ℎ(�̃�) = 1 ; 

 �̃� is convex if  ∀𝑥, 𝑦 ∈ 𝑋, ∀𝜆 ∈ [0, 1], 
𝜇�̃�(𝜆𝑥 + (1 − 𝜆𝑦)) ≥ {𝜇�̃�(𝑥), 𝜇�̃�(𝑦)}  ; 

 �̃� is a fuzzy number if �̃� is a fuzzy subset of 𝑅 such that 𝑛𝑜𝑦(�̃�) ≠ ∅, 𝑠𝑢𝑝𝑝(�̃�) is bounded and �̃�𝛼 are 

bounded intervals of 𝑅. The set of all fuzzy numbers is denoted 𝐹(𝑅). 

 

Definition 3: Any real 𝑥 such that 𝜇�̃�(𝑥) = 1 is said to be a modal value or mode or the average value of 

the fuzzy number �̃�. 

 

A fuzzy number �̃� is said to be strictly positive if ∀𝑥 < 0, 𝜇�̃�(𝑥) = 0. It is strictly negative if ∀𝑥 > 0, 

𝜇�̃�(𝑥) = 0. 

 

Definition 4 (Gong, Z., & Hao, Y. (2019).). : A fuzzy number �̃� is said to be triangular if there are three 

real numbers 𝑎 < 𝑏 < 𝑐 such that : 

𝜇�̃�(𝑥) = { 
𝑥−𝑎

𝑏−𝑎
  ,   𝑖𝑓  𝑎 ≤ 𝑥 ≤ 𝑏      

𝑐−𝑥

𝑐−𝑏
  ,     𝑖𝑓     𝑏 < 𝑥 ≤ 𝑐 0  ,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           

(6) 

 

Notation : �̃� = (𝑎, 𝑏, 𝑐)  or  �̃� = (𝑎/𝑏/𝑐). 

 

Definition 5 (Gong, Z., & Hao, Y. (2019).). : A fuzzy number �̃� is said to be of type L-R if there are three 

real 𝑚, 𝑎 > 0, 𝑏 > 0 and two positive, continuous and decreasing functions L and R of 𝑅 in [0, 1] such 

that : 

 𝐿(0) = 𝑅(0) = 1 ; 𝐿(1) = 0 or  𝐿(𝑥) > 0 ∀𝑥 ∈ 𝑅 with 𝐿(𝑥) = 0  ; 
𝑅(1) = 0 or  𝑅(𝑥) > 0 ∀𝑥 ∈ 𝑅 with 𝑅(𝑥) = 0  ; 

𝜇�̃�(𝑥) = { 𝐿 (
𝑚−𝑥

𝑎
) ,      𝑖𝑓  𝑥 ∈ [𝑚 − 𝑎, 𝑚]      𝑅 (

𝑥−𝑚

𝑏
) ,       𝑖𝑓     𝑥 ∈ [𝑚, 𝑚 +

𝑏] 0   ,                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           (7) 

 

Notation : �̃� = 〈𝑚, 𝑎, 𝑏〉𝐿𝑅 or simply �̃� = (𝑚, 𝑎, 𝑏)𝐿𝑅 

Moreover, any triangular fuzzy number �̃� = (𝑎, 𝑏, 𝑐) is a fuzzy number of type L-R.  Its L-R writing is : 

�̃� = (𝑎, 𝑏, 𝑐)  = 〈𝑏, 𝑏 − 𝑎, 𝑐 − 𝑏〉𝐿𝑅. 

The family of all fuzzy numbers of type L-R is denoted 𝐹𝐿𝑅(𝑅) and any real 𝑟 also called fuzzy singleton 

has the form L-R  𝑟 = (𝑟, 0, 0)𝐿𝑅 (by convention). 

https://jcrinn.com/
https://creativecommons.org/licenses/by-sa/4.0/


Journal of Computing Research and Innovation (JCRINN) Vol. 7 No.2 (2022) (pp304-315) 
https://jcrinn.com :  eISSN: 2600-8793 doi: 10.24191/jcrinn.v7i2.323 

 

 

Copyright© 2022 UiTM Press. This is an open access article licensed under CC BY-SA 

https://creativecommons.org/licenses/by-sa/4.0/ 
 

307 

 

 

Fuzzy arithmetic 
 

The algebraic operations on fuzzy numbers, used in this text, are based on three main arithmetics: the Zadeh 

extension principle, the arithmetic of 𝛼-cuts and intervals and the arithmetic of fuzzy numbers of the same 

type L-R (Gong, Z., & Hao, Y. (2019).). 

 

The Zadeh extension principle 
 

The arithmetic of the extension principle allows any classical binary operation to be extended ∗ in 𝑅 to a 

fuzzy binary operation ⊛ in 𝐹(𝑅) defined ∀�̃�, �̃� ∈ 𝐹(𝑅), ∀𝑧 ∈ 𝑅   by (Chen, G., Liu, Z., & Zhang, J. 

(2020).). : 

𝜇�̃� ⊛�̃�(𝑧) =𝑠𝑢𝑝 𝑠𝑢𝑝 {{𝜇�̃�(𝑥), 𝜇�̃�(𝑦)}  ∕ 𝑥, 𝑦 ∈ 𝑅, 𝑥 ∗ 𝑦 = 𝑧}                   (8) 

It is defined as follows: 

 

Definition 6 (Fazlollahtabar, H., & Gholizadeh, H. (2019).). : Let 𝐸 = 𝐸1 × … × 𝐸𝑛 and 𝐹 be two classical 

sets. Let f also be an application from E into F. The extension principle is another application 𝑓 of �̃�(𝐸) in 

�̃�(𝐹) such that   ∀�̃� ∈ �̃�(𝐸), ∃�̃� ∈ �̃�(𝐹) : 𝑓(�̃�) = �̃� and ∀𝑦 ∈ 𝐹we have 

 

{𝜇�̃�(𝑦) = 𝑠𝑢𝑝
𝑥∈

𝐸

𝑓(𝑥)
=𝑦

{{𝜇�̃�1
(𝑥1), … , 𝜇�̃�𝑛

(𝑥𝑛)} }  𝑖𝑓 𝑓−1(𝑦) ≠ ∅  𝜇�̃�(𝑦) =

0 ,                                                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       (9) 

where 𝑓−1 is the reciprocal of 𝑓 and �̃�(𝐸), �̃�(𝐹) are respectively the sets of all fuzzy subsets of 𝐸 and 𝐹. 

 

Arithmetic of 𝛼-cuts and intervals 
 

The arithmetic of 𝛼-The arithmetic of the cuts is based on the interval arithmetic as defined below: 

Definition 7: Let [𝑎, 𝑏], [𝑐, 𝑑] two bounded real intervals and ∗ the classical operation of addition, 

subtraction, multiplication or division. We have : 
[𝑎, 𝑏] ∗ [𝑐, 𝑑] = [𝛼, 𝛽]                                                     (10) 

where [𝛼, 𝛽] = {𝑥 ∗
𝑦

𝑎
≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝑦 ≤ 𝑑} assuming that 0 ∉ [𝑐, 𝑑] for the division. 

In concrete terms, we have : 
[𝑎, 𝑏] + [𝑐, 𝑑] = [𝑎 + 𝑐, 𝑏 + 𝑑]                                                                (11) 
[𝑎, 𝑏] − [𝑐, 𝑑] = [𝑎 − 𝑑, 𝑏 − 𝑐]                                                                (12) 

[𝑎, 𝑏] × [𝑐, 𝑑] = [{𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑} , {𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑} ]            (13) 

[𝑎, 𝑏] ÷ [𝑐, 𝑑] = [{
𝑎

𝑐
,

𝑎

𝑑
,

𝑏

𝑐
,

𝑏

𝑑
} , {

𝑎

𝑐
,

𝑎

𝑑
,

𝑏

𝑐
,

𝑏

𝑑
} ]                           (14) 

 

Definition 8: Let �̃�, �̃� be two fuzzy numbers of respective alpha-slices    �̃�𝛼 = [𝐴𝐿(𝛼), 𝐴𝑈(𝛼)] and �̃�𝛼 =
[𝐵𝐿(𝛼), 𝐵𝑈(𝛼)]  (0 ≤ 𝛼 ≤ 1). The fuzzy arithmetic operations on �̃� and �̃� are defined via their 𝛼-cuts in 

the following way: 

[�̃�  ⊕ �̃�]
𝛼

= �̃�𝛼 + �̃�𝛼 = [𝐴𝐿(𝛼), 𝐴𝑈(𝛼)] + [𝐵𝐿(𝛼), 𝐵𝑈(𝛼)]          (15) 

[�̃�  ⊝ �̃�]
𝛼

= �̃�𝛼 − �̃�𝛼 = [𝐴𝐿(𝛼), 𝐴𝑈(𝛼)] − [𝐵𝐿(𝛼), 𝐵𝑈(𝛼)]          (16) 

[�̃�  ⊗ �̃�]
𝛼

= �̃�𝛼 × �̃�𝛼 = [𝐴𝐿(𝛼), 𝐴𝑈(𝛼)] × [𝐵𝐿(𝛼), 𝐵𝑈(𝛼)]          (17) 

[�̃�  ⊘ �̃�]
𝛼

= �̃�𝛼 ÷ �̃�𝛼 = [𝐴𝐿(𝛼), 𝐴𝑈(𝛼)] ÷ [𝐵𝐿(𝛼), 𝐵𝑈(𝛼)]          (18) 

These 𝛼-These resultant cuts are to be calculated according to the formulas in relations (11) to (14) above 

(Sanga, S. S., & Jain, M. (2019).). 
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Arithmetic of fuzzy numbers of the same type L-R 
 

Let �̃� = 〈𝑚, 𝑎, 𝑏〉𝐿𝑅 and �̃� = 〈𝑛, 𝑐, 𝑑〉𝐿𝑅 be two fuzzy numbers of the same L-R type (Sanga, S. S., & Jain, 

M. (2019).). The arithmetic operations on �̃� and �̃� are defined as follows (Babu, P. S., Kumar, K. S., & 

Chandan, K. (2022).: 

�̃� ⊕ �̃� = 〈𝑚 + 𝑛, 𝑎 + 𝑐, 𝑏 + 𝑑〉𝐿𝑅                                         (19) 

�̃�  ⊝ �̃� = 〈𝑚 − 𝑛, 𝑎 + 𝑑, 𝑏 + 𝑐〉𝐿𝑅                                          (20) 

�̃�⨀�̃� ≈ {〈𝑚𝑛, 𝑚𝑐 + 𝑛𝑎 − 𝑎𝑐, 𝑚𝑑 + 𝑛𝑏 + 𝑏𝑑〉𝐿𝑅  ,               𝑖𝑓 �̃�, �̃� > 0 〈𝑚𝑛, −𝑚𝑑 − 𝑛𝑏 − 𝑏𝑑, −𝑚𝑐 −
𝑛𝑎 + 𝑎𝑐〉𝐿𝑅 ,         𝑖𝑓 �̃�, �̃� < 0 〈𝑚𝑛, −𝑚𝑑 + 𝑛𝑎 + 𝑎𝑑, −𝑚𝑐 + 𝑛𝑏 − 𝑏𝑐〉𝐿𝑅 , 𝑖𝑓 �̃� < 0, �̃� > 0      (21) 

  
1

�̃�
≈ 〈

1

𝑛
,

𝑑

𝑛(𝑛+𝑑)
,

𝑐

𝑛(𝑛−𝑐)
〉𝐿𝑅, �̃� > 0                                          (22) 

�̃� ⊘ �̃� ≈ 〈
𝑚

𝑛
,

𝑚𝑑

𝑛(𝑛+𝑑)
+

𝑎

𝑛
−

𝑎𝑑

𝑛(𝑛+𝑑)
,

𝑚𝑐

𝑛(𝑛−𝑐)
+

𝑏

𝑛
+

𝑏𝑐

𝑛(𝑛−𝑐)
〉𝐿𝑅, �̃�, �̃� > 0     (23) 

Here, multiplication and division are defined by secant approximation rule (Panta, A. P., Ghimire, R. P., 

Panthi, D., & Pant, S. R. (2021).). 

 

FUZZY TRANSFORMS 

 

Fuzzy functions 

 

There are several types of fuzzy functions: constraint fuzzy functions, fuzzy functions by propagation of a 

fuzzy variable and fuzzy functions proper (Ritha, W., & Rajeswari, N. (2021).). 

 

Definition 9: (Panta, A. P., Ghimire, R. P., Panthi, D., & Pant, S. R. (2021).). : Let X, Y be two universes 

and �̃�(𝑌) the set of all fuzzy subsets on Y. The application  𝑓 : 𝑋 ⟶  �̃�(𝑌), 𝑥 ↦ �̃� = 𝑓 (𝑥) is a fuzzy 

function if  

𝜇�̃�(𝑦) = 𝜇�̃�(𝑥, 𝑦), ( ∀ (𝑥, 𝑦) ∈ 𝑋×𝑌 ) (24)     

where �̃� is a fuzzy relationship between the elements of 𝑋×𝑌. 

When 𝑋 = [𝑎, 𝑏], 𝑌 = 𝑅then  �̃�(𝑌)  = 𝐹(𝑅) and 𝑓 is a fuzzy function of a real variable. This is the case 

for the expressions  𝑡 →  �̃�. 𝑡 + �̃�, 𝑡 → 𝑒�̃�𝑡. 

 

Definition 10 (Wang, F. F. (2022).). : Let 𝑓(𝑡) a classical function of variable t. A fuzzy function, an 

extension of f, is an application denoted 𝑓 of 𝑅 in 𝐹(𝑅) such that 𝑓(𝑡) = �̃� has as parametric representations 

the 𝛼-cuts : 

�̃�𝛼 = [𝑍𝐿(𝛼), 𝑍𝑈(𝛼)]                                           (25) 

 

Definition 11 (Wang, F. F. (2022).). ∶  Let  𝑓(𝑥1, … , 𝑥𝑛) a real function of  𝑅𝑛 in  𝑅  and  �̃�1, … , �̃�𝑛 𝑛 fuzzy 

subsets of  𝑅. Zadeh's extension principle allows to induce from 𝑓(𝑥1, … , 𝑥𝑛) a fuzzy function 

𝑓 : 𝐹𝑛(𝑅)  ⟶  𝐹(𝑅) such that 𝑓 (�̃�1, … , �̃�𝑛)  is a fuzzy subset �̃� of 𝑅 of which : 

⮚ The membership function is defined ∀𝑦 ∈ 𝑅|𝑓(𝑥1, … , 𝑥𝑛) = 𝑦  by : 

𝜇�̃�(𝑦) = {{{𝜇�̃�1
(𝑥1), … , 𝜇�̃�𝑛

(𝑥𝑛)} }    𝑖𝑓 𝑓−1(𝑦) ≠ ∅ 0                                                               𝑖𝑓 𝑓−1(𝑦) = ∅      

(26) 

⮚ The parametric representation is given  ∀𝛼 ∈ [0, 1] by : 

�̃�(𝛼) = (𝑓 (�̃�1, … , �̃�𝑛))
𝛼

= 𝑓 (�̃�1(𝛼), … , �̃�𝑛(𝛼))                  (27) 
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This definition establishes the compatibility between the Zadeh extension principle approach and the 

arithmetic of alpha-slices (Zhang, Q., Sun, H., Gao, X., Wang, X., & Feng, Z. (2022).). 

For example, the expressions  �̃� =
2�̃�+10

3�̃�+4
   and  �̃� =

�̃��̃�+�̃�

�̃��̃�+�̃�
  can be considered as fuzzy functions, extensions 

of the classical functions  ℎ(𝑥) =
2𝑥+10

3𝑥+4
    and   𝑔(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥 ) =

𝑥1𝑥+𝑥2

𝑥3𝑥+𝑥4
 . 

 

Fuzzy Laplace Transforms 

 

Definition 12 (Gong, Z., & Hao, Y. (2019).). : Let 𝑓(𝑡) a fuzzy function and 𝑠 a real parameter. The fuzzy 

Laplace transform of 𝑓(𝑡) is a fuzzy function defined by : 

�̂�(𝑠) = 𝐿[𝑓(𝑡)] = ∫
∞

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 = ∫

𝜏

0
𝑒−𝑠𝑡𝑓(𝑡)𝑑𝑡 , (28) 

(insofar as this limit exists). 

With respect to its parametric representations, the fuzzy transform of 𝑓(𝑡) is written as : 

�̂�(𝑠, 𝛼) = 𝐿[𝑓(𝑡, 𝛼)] = [𝐿[𝑓𝐿(𝑡, 𝛼)], 𝐿[𝑓𝑈(𝑡, 𝛼)]], 0 ≤ 𝛼 ≤ 1       (29) 

where     {𝐿[𝑓𝐿(𝑡, 𝛼)] = ∫
∞

0
𝑒−𝑠𝑡𝑓𝐿(𝑡, 𝛼)𝑑𝑡 𝐿[𝑓𝑈(𝑡, 𝛼)] = ∫

∞

0
𝑒−𝑠𝑡𝑓𝑈(𝑡, 𝛼)𝑑𝑡                                 

(30) 

Example: Let �̃� = (3, 4, 5) a triangular fuzzy number and 𝑓(𝑡) = 𝑒�̃�𝑡 a fuzzy function. Then by definition, 

�̂�(𝑠) = ∫
∞

0
𝑒−𝑠𝑡𝑒�̃�𝑡𝑑𝑡 =

1

𝑠−�̃�
. 

 

But,    

�̃�𝛼 =  [3 + 𝛼, 5 − 𝛼] and  𝑓(𝑡, 𝛼) = [𝑒(3+𝛼)𝑡, 𝑒(5−𝛼)𝑡]. 

So the representation 𝛼-slices of the transform of 𝑓(𝑡) = 𝑒�̃�𝑡 is given by : 

�̂�(𝑠, 𝛼) = [∫
∞

0
𝑒−𝑠𝑡𝑒(3+𝛼)𝑡𝑑𝑡, ∫

∞

0
𝑒−𝑠𝑡𝑒(5−𝛼)𝑡𝑑𝑡] = [

1

𝑠−𝛼−3
,

1

𝑠+𝛼−5
]. 

 

Properties: Like classical transforms, fuzzy Laplace transforms also have properties such as linearity, 

translation theorems, derivation theorems, whose eloquent proofs can be found in (Gong, Z., & Hao, Y. 

(2019).).  

 

FUZZY WAITING SYSTEM 𝐹 𝑀/ 𝐹 𝐺/1  
 

Classical M/G/1 system and Laplace Transforms 
 

The Laplace transform plays a crucial role in the calculation of performance measures of a classical non-

Markovian system M/G/1; this is done through the Laplace transform of the general service law G, defined 

by : 

𝐵∗(𝑠) =  ∫
∞

0
𝑒−𝑠𝑡𝑏(𝑡)𝑑𝑡,                                                  (31) 

where 𝑏(𝑡) is the probability density of this general law.  

On the one hand, this Laplace transform 𝐵∗(𝑠) transform is used in the definition of the generating function 

of the stationary probabilities of the system given by (Gong, Z., & Hao, Y. (2019).). : 

 

𝐺(𝑧) = (1 − 𝜌)
(1−𝑧)𝐵∗(𝜆−𝜆𝑧)

𝐵∗(𝜆−𝜆𝑧)−𝑧
                                          (32) 

where 𝜆 and 𝜌 = 𝜆𝑚1 are respectively the average arrival rate of customers in the system and the traffic 

rate in the system (𝑚1 being the first order moment of the G law). 
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On the other hand, 𝐵∗(𝑠) intervenes in the analysis of the variable 𝑊 distribution of the residence (and 

waiting) times of a 𝑊𝑞 of a customer in the system (the queue) via its Laplace transform defined by :  

𝑊∗(𝑠) = (1 − 𝜌)
𝑠𝐵∗(𝑠)

𝜆𝐵∗(𝑠)−𝜆+𝑠
    and   𝑊𝑞

∗(𝑠) = (1 − 𝜌)
𝑠

𝜆𝐵∗(𝑠)−𝜆+𝑠
       (33) 

This allows us to derive the average length of stay and waiting time of a customer as a first order moment 

of the variable 𝑊 (variable 𝑊𝑞) : 

𝜏𝑠 = (−1)
𝑑𝑊∗(𝑠)

𝑑𝑠
(0)   and   𝜏𝑞 = (−1)

𝑑𝑊𝑞
∗(𝑠)

𝑑𝑠
(0)                     (34) 

Other performance measures such as the average number of customers in the system or in the queue are 

derived by applying Little's law:  

𝑁𝑠 = 𝜆. 𝜏𝑠   and 𝑁𝑞 = 𝜆. 𝜏𝑞                                         (35) 

 

Fuzzy system 𝐹 𝑀/ 𝐹 𝐺/1 and Fuzzy Laplace Transforms 
 

A fuzzy waiting system is defined as one with vague and imprecise descriptor parameters. In this case, the 

probability density of the general service law is a fuzzy function of a real variable �̃�(𝑡). Hence the 

opportunity of its analysis by the fuzzy Laplace transforms, object of this article. 

 

Being then in a fuzzy environment where the system's descriptor parameters are fuzzy, the probability 

density of the general service law �̃�(𝑡) admits a fuzzy Laplace transform of expression (Gong, Z., & Hao, 

Y. (2019).). : 

 

�̃�∗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡�̃�(𝑡)𝑑𝑡                                     (36) 

On the one hand, by Zadeh's extension principle, the formulas in relation (33) above become : 

�̃�∗(𝑠) = (1 − �̃�)
𝑠�̃�∗(𝑠)

𝑠−�̃�+�̃��̃�∗(𝑠)
    and   �̃�𝑞

∗
(𝑠) = (1 − �̃�)

𝑠

𝑠−�̃�+�̃��̃�∗(𝑠)
           (37) 

 

These are nothing more than fuzzy extensions of the Laplace transforms of the variables 𝑊 and 𝑊𝑞 of the 

residence and waiting times of a customer in the classical M/G/1 system (in the queue).   

 

On the other hand, although fuzzy, these expressions of relation (37) are functions of a real variable 𝑠. 

Hence the opportunity to exploit the properties of the moments of the variables �̃� and �̃�𝑞 to define the 

average stay and waiting time of a customer in the system (the queue) by the formulas :  

�̃�𝑠 = (−1)
𝑑�̃�∗(𝑠)

𝑑𝑠
(0)  and   �̃�𝑞 = (−1)

𝑑�̃�𝑞
∗
(𝑠)

𝑑𝑠
(0)                    (38) 

 

It will therefore be sufficient to apply Little's Law to obtain the other performance measures of the FM/FG/1 

system, including : 

�̃�𝑠 = �̃�⨀�̃�𝑠    and   �̃�𝑞 = �̃�⨀�̃�𝑞                              (39) 

FM/F case study𝐸2/1 
 

Position of the problem 
 

As announced above, this case had just been successfully analyzed by Merlyn Margaret and her friends 

(Kannadasan, G., & Sathiyamoorthi, N. (2018).). Using the NLP approach, these authors showed that the 

problem of analysing a performance measure of a fuzzy expectation system 𝐹M/𝐹G/1 can be reduced to 

the solution of a pair of non-linear parametric programs. After solving these PNLPs, they used the mean 

degree integral scheme defined by the relation below to defuzzify the obtained fuzzy features: 
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𝛷(�̃�) =
∫

1

0
𝛼

2
(𝑍𝛼

𝐿+𝑍𝛼
𝑈)𝑑𝛼

∫
1

0
𝛼𝑑𝛼

= ∫
1

0
𝛼(𝑍𝛼

𝐿 + 𝑍𝛼
𝑈)𝑑𝛼                           (40) 

It is a question of dealing with this system 𝐹M/𝐹G/1 by the fuzzy Laplace transform method as described 

in the previous subsection.  

 

The results obtained are defuzzified by the "integral centroid" approach named "COA method", i.e. "Center 

of Area" defined by (Fazlollahtabar, H., & Gholizadeh, H. (2019).). : 

[∫𝑠𝑢𝑝𝑝(�̃�)
𝑥. 𝜇�̃�(𝑥)𝑑𝑥] ÷ [∫𝑠𝑢𝑝𝑝(�̃�)

𝜇�̃�(𝑥)𝑑𝑥]                          (41) 

where  𝑍∗ is the classical defuzzified value corresponding to the fuzzy result �̃� and 𝜇�̃�(𝑥) is the membership 

function. 

 

Resolution 

 

In the classical model M/𝐸2/1model, the density of the service law 𝐸𝑟𝑙𝑎𝑛𝑔2 and its Laplace transform are 

given (cf. [5], [16] by : 

𝑏(𝑡) = (2𝜇)2𝑡𝑒−2𝜇𝑡  and   𝐵∗(𝑠) = (
2𝜇

𝑠+2𝜇
)

2
  (for 𝑘 = 2) (42) 

All calculations done, this allows to write the relation (33) as follows: 

 𝑊∗(𝑠) =
4𝜇(𝜇−𝜆)

𝑠2+(4𝜇−𝜆)𝑠+4𝜇(𝜇−𝜆)
   and   𝑊𝑞

∗(𝑠) =
𝜇−𝜆

𝜇

(𝑠+2𝜇)2

𝑠2+(4𝜇−𝜆)𝑠+4𝜇(𝜇−𝜆)
            (43) 

 

In the FM/𝐹𝐸𝑘/1 the service density is a fuzzy extension of the function 𝑏(𝑡) given by : 

�̃�(𝑡) =
(𝑘�̃�)𝑘

(𝑘−1)!
𝑡𝑘−1𝑒−𝑘�̃�𝑡                                                  (44) 

By a simple integration calculation, we can establish that : 

�̃�∗(𝑠) = ∫
∞

0
𝑒−𝑠𝑡�̃�(𝑡)𝑑𝑡 = (

𝑘�̃�

𝑠+𝑘�̃�
)

𝑘
                                     (45) 

Or  

  �̃�∗(𝑠) = (
2�̃�

𝑠+2�̃�
)

2
   for  𝑘 = 2                                      (46) 

Therefore: 

�̃�∗(𝑠) =
4�̃�(�̃�−�̃�)

𝑠2+(4�̃�−�̃�)𝑠+4�̃�(�̃�−�̃�)
   and   𝑊𝑞

∗(𝑠) =
�̃�−�̃�

�̃�

(𝑠+2�̃�)2

𝑠2+(4�̃�−�̃�)𝑠+4�̃�(�̃�−�̃�)
        (47) 

And according to relation (38) above, we have :  

�̃�𝑠 = (−1)
𝑑�̃�∗(𝑠)

𝑑𝑠
(0) =

3�̃�

4�̃�(�̃�−�̃�)
+

1

�̃�
  and  �̃�𝑞 = (−1)

𝑑�̃�𝑞
∗
(𝑠)

𝑑𝑠
(0) =

3�̃�

4�̃�(�̃�−�̃�)
    (48)  

 

Numerical example 
 

Statement  
 

Consider a waiting system in which customers arrive according to a Poisson process with an imprecise 

average rate of about 1 customer per minute. Let us also assume that the service time is distributed according 

to a𝐸𝑟𝑙𝑎𝑛𝑔2 process with an imprecise mean of about 1/3. Let us determine the average time a customer 

stays in the system and waits in the queue respectively.   

 

Resolution procedure  
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To say that the average service time of𝐸𝑟𝑙𝑎𝑛𝑔2 is about 1/3 means that the service rate is about 3. 

Since these two descriptors are vague and imprecise, we will proceed as follows:  

1. Represent these parameters by two triangular fuzzy numbers of modes 1 and 3 respectively: �̃� =

(
1

2
, 1,

3

2
) and �̃� = (2, 3, 4)  for example, then write them in L-R form; 

2. Apply the formulas in relation (48), according to the fuzzy Laplace transform approach; 

3. Use L-R fuzzy number arithmetic (see relations (19) to (23)) to obtain the expected fuzzy results; 

4. Defuzzify these results by relation (41) as announced in 4.3.1 above.  

 

Results obtained 
 

1. Fuzzy numbers �̃� = (
1

2
, 1,

3

2
) and �̃� = (2, 3, 4) have the form L-R : 

�̃� = 〈1,
1

2
,

1

2
〉𝐿𝑅  and  �̃� = 〈3, 1, 1〉𝐿𝑅 

2. From the formulas in relation (48), 

 �̃�𝑠 =
3�̃�

4�̃�(�̃�−�̃�)
+

1

�̃�
=

3〈1,
1

2
,
1

2
〉𝐿𝑅

4〈3,1,1〉𝐿𝑅(〈3,1,1〉𝐿𝑅−〈1,
1

2
,
1

2
〉𝐿𝑅)

+
1

〈3,1,1〉𝐿𝑅
                      (49) 

�̃�𝑞 =
3�̃�

4�̃�(�̃�−�̃�)
=

3〈1,
1

2
,
1

2
〉𝐿𝑅

4〈3,1,1〉𝐿𝑅(〈3,1,1〉𝐿𝑅−〈1,
1

2
,
1

2
〉𝐿𝑅)

                                              (50) 

But,  

3〈1,
1

2
,

1

2
〉𝐿𝑅 = 〈3,

3

2
,

3

2
〉𝐿𝑅 ; 

1

〈3,1,1〉𝐿𝑅
≃ 〈

1

3
,

1

12
,

1

6
 〉𝐿𝑅 ;  

 4〈3, 1, 1〉𝐿𝑅 = 〈12, 4, 4〉𝐿𝑅  and  〈3, 1, 1〉𝐿𝑅 − 〈1,
1

2
,

1

2
〉𝐿𝑅 = 〈2,

3

2
,

3

2
〉𝐿𝑅. 

Thus, according to the secant approximation formula of relations (21) to (23), the results are : 

4〈3, 1, 1〉𝐿𝑅 (〈3, 1, 1〉𝐿𝑅 − 〈1,
1

2
,
1

2
〉𝐿𝑅) = 〈12, 4, 4〉𝐿𝑅 ⊗ 〈2,

3

2
,
3

2
〉𝐿𝑅  

≃ 〈24, 20, 32〉𝐿𝑅 
Hence, 

�̃�𝑠 ≃ 〈
1

8
,

9

56
, 1〉𝐿𝑅 + 〈

1

3
,

1

12
,

1

6
 〉𝐿𝑅 ≃ 〈

11

24
,

41

168
,

7

6
〉𝐿𝑅                     (51) 

�̃�𝑞 =
〈3,

3

2
,
3

2
〉𝐿𝑅 

〈24,20,32〉𝐿𝑅
≃ 〈

1

8
,

9

56
, 1〉𝐿𝑅                                                    (52) 

These approximate results are none other than the triangular fuzzy numbers  

              �̃�𝑠 ≃ (
3

14
,

11

24
,

13

8
)   and   �̃�𝑞 ≃ (

−1

28
,

1

8
,

9

8
)                     (53) 

of modal values 
11

24
 and 

1

8
  (units of time) respectively. 

 

3. Applying Little's formula and the secant approximation of the product of two fuzzy numbers of the same 

type L-R allows us to obtain the other performance measures, namely the average number of customers 

in the system and in the queue, i.e.  �̃�𝑠 =  �̃�⨀�̃�𝑠 and  �̃�𝑞 =  �̃�⨀�̃�𝑞 :  

�̃�𝑠 =  �̃�⨀�̃�𝑠 = 〈1,
1

2
,

1

2
〉𝐿𝑅⨀〈

11

24
,

41

168
,

7

6
〉𝐿𝑅 ≃ 〈

11

24
,

59

168
,

95

48
〉𝐿𝑅            (54) 

�̃�𝑞 =  �̃�⨀�̃�𝑞 = 〈1,
1

2
,

1

2
〉𝐿𝑅⨀〈

1

8
,

9

56
, 1〉𝐿𝑅 ≃ 〈

1

8
,

1

7
,

25

16
〉𝐿𝑅                   (55) 

In triangular writing, we have : 

          �̃�𝑠 ≈ (
3

28
,

11

24
,

39

16
)       and   �̃�𝑞 ≈ (

−1

56
,

1

8
,

27

16
)                                      (56) 

of modal values  
11

24
 and  

1

8
 (customers per unit of time) respectively. 
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4. Finally, the defuzzification of the results obtained by relation (41) requires us to first define their 

membership functions by relation (6), and then to proceed with the various calculations required: 

 1° For  �̃�𝑠 ≃ (
3

14
,

11

24
,

13

8
)the membership function is given by : 

𝜇�̃�𝑠
(𝑥) = {

168𝑥−36

41
 ,   𝑖𝑓 

3

14
≤ 𝑥 ≤  

11

24
  

39−24𝑥

28
 ,    𝑖𝑓 

11

24
≤ 𝑥 ≤  

13

8
 0  ,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

(57) 

𝜏𝑠
∗ = [∫

11

24
3

14

𝑥.
168𝑥−36

41
𝑑𝑥 + ∫

13

8
11

24

𝑥.
39−24𝑥

28
𝑑𝑥] ÷ [∫

11

24
3

14

168𝑥−36

41
𝑑𝑥 + ∫

13

8
11

24

39−24𝑥

28
𝑑𝑥]   

= 0.781 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 ; 

2° For �̃�𝑞 ≃ (
−1

28
,

1

8
,

9

8
)we have : 

𝜇�̃�𝑞
(𝑥) = {

56𝑥+2

9
,   𝑖𝑓 

−1

28
≤ 𝑥 ≤  

1

8
 
9−8𝑥

8
 ,     𝑖𝑓  

1

8
≤ 𝑥 ≤  

9

8
 0  ,                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             (58) 

     𝜏𝑞
∗ = [∫

1

8
−1

28

𝑥.
56𝑥+2

9
𝑑𝑥 + ∫

9

8
1

8

𝑥.
9−8𝑥

8
𝑑𝑥] ÷ [∫

1

8
−1

28

56𝑥+2

9
𝑑𝑥 + ∫

9

8
1

8

9−8𝑥

8
𝑑𝑥]  

= 0.405  𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 ; 

3° For  �̃�𝑠 ≈ (
3

28
,

11

24
,

39

16
)the membership function is given by : 

𝜇�̃�𝑠
(𝑥) = {

168𝑥−18

59
   𝑖𝑓  

3

28
≤ 𝑥 ≤  

11

24
 
117−48𝑥

95
   𝑖𝑓   

11

24
≤ 𝑥 ≤  

39

16
 0                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                          

(59) 

𝑁𝑠
∗ = [∫

11

24
3

28

𝑥.
168𝑥−18

59
𝑑𝑥 + ∫

39

16
11

24

𝑥.
117−48𝑥

95
𝑑𝑥] ÷ [∫

11

24
3

28

168𝑥−18

59
𝑑𝑥 + ∫

39

16
11

24

117−48𝑥

95
𝑑𝑥] =

1.000  𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 ; 
 or  60 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 if the unit of time is the 𝑚𝑖𝑛𝑢𝑡𝑒. 

4° For  �̃�𝑞 ≈ (
−1

56
,

1

8
,

27

16
)we have : 

𝜇�̃�𝑞
(𝑥) = {

56𝑥+1

8
 , 𝑖𝑓 

−1

56
≤ 𝑥 ≤  

1

8
  

27−16𝑥

25
 , 𝑖𝑓  

1

8
≤ 𝑥 ≤  

27

16
  0    ,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                          

(60) 

𝑁𝑞
∗ = [∫

1

8
−1

56

𝑥.
56𝑥+1

8
𝑑𝑥 + ∫

27

16
1

8

𝑥.
27−16𝑥

25
𝑑𝑥] ÷ [∫

1

8
−1

56

56𝑥+1

8
𝑑𝑥 + ∫

27

16
1

8

27−16𝑥

25
𝑑𝑥]  

= 0.598  𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒, 

Or  36  𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 if the minute is the chosen unit of time. 

 

Discussion  
 

We find that all modal values of the fuzzy results correspond exactly to the performance measures (average 

waiting time, average dwell time, average number of customers in the system and in the queue) of the 

classical model M/𝐸2/1 which can be obtained by the Pollaczeck-Khintchine formula mentioned above 

(Babu, P. S., Kumar, K. S., & Chandan, K. (2022).). 

 

As for the defuzzified values, they are all slightly higher than these modes which are performance measures 

of the classical model.  Shouldn't we see the effects of a fuzzy environment on the performance measures 

of a waiting system? 

 

CONCLUSION  

In this paper, we have sought both to answer the question of what happens to the performance measures of 

a non-Markovian system in a fuzzy environment and to apply fuzzy transforms in the evaluation of these 

measures. 
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To achieve this, we used both the L-R arithmetic of triangular fuzzy numbers and especially the Zadeh 

extension principle to obtain the fuzzy transform of the distribution of the dwell times of a customer in the 

system (the queue). 

 

The numerical example treated revealed that, when the descriptor parameters of a system are vague and 

uncertain, the performance measures, which are fuzzy numbers, have as modal values the performance 

measures of the corresponding classical model. 

 

The Laplace transform method is therefore still applicable in the evaluation of the performance measures 

of a fuzzy FM/FG/1 queueing system. Will this be the case for a fuzzy FG/ FM/1 queue? This is a question 

worth considering. 
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