HIPERLAN/2: OFDM SIMULATION USING SIMULINK

This project report is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons) UNIVERSITITEKNOLOGI MARA

NOR AZRINA BT MOHAMMAD YUSUF FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM

ACKNOWLEDGEMENT

I would like to thank my supervisor Ir Muhamad b Ibrahim for the endless hours of help, suggestions, ideas and advice during the development of this thesis. I would also like to thank Mr Rafizan for his help, advice, ideas and suggestions.

Finally I would like to thank my computer for only crashing seriously once during the writing of this thesis.

Nor Azrina Bt Mohammad Yusuf 2001475277 EE 220 FACULTY OF ELECTRICAL ENGINEERING UiTM SHAH ALAM

ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM) is the digital modulation technique, which consists of transmitting a data stream on several carriers instead of using single carrier. It is adopted in several recent digital wireless broadcast and network standards, including HiperLAN/2, IEEE802.1 la and Digital audio Broadcasting (DAB).

This project paper will explore the use of Simulink to model features of OFDM receiver design. This thesis will also discuss the implementation of OFDM in HiperLAN/2 by simulation using Simulink. It will also explore the use of Simulink to model features of OFDM receiver designs, in packet based and in continuous transmission system, including synchronization and channel compensation problems.

TABLE OF CONTENTS

CHAPTER	DESCRIPTION PAGE					P	PAGE	
1.	INTRODUCTION							
	1.1	History	y of	wireless	Cor	nmunication	1	
	1.2	Wireless Transmission			2			
	1.3	Scope		of	V	Vork	3	
	1.4	Organi	zation	of	the	Thesis	3	
2.	Hipe	rLAN/2						
	2.1	Introduction to HiperLAN/2 Wireless					4	
		Communication						
	2.2	System Overview				6		
	2.3	Features of HiperLAN/2		:LAN/2	7			
		2.3.1 High Speed Transmission			7			
		2.3.2 Connection-oriented			8			
		2.3.3 QoS Support				8		
		2.3.4	2.3.4 Automatic Frequency Allocation			8		
		2.3.5 Security Support			9			
		2.3.6	Mobility	Support			9	
		2.3.7	Power S	ave			10	
	2.4	4 Protocol Architectual and Layers				11		
		2.4.1	Physical	layer			12	
		2.4.2	Data Lin	k Control I	Layer		14	
		2.4.3	Converg	ence Layer			19	

MOBILE RADIO ENVIRONMENT

3.1	Introd	uction	21
3.2	Attenr	21	
3.3	Multip	23	
	3.3.1	Delay Spread	24
	3.3.2	Intersymbols Interference (ISI)	26
	3.3.3	Rayleidh Fading	26
	3.3.4	Doppler Shift	28

OFDM

4.1	Introduction	29
4.2	OFDM Generation	30
4.3	Channel And Receiver Parts	31
4.4	Limitation Of Bandwidth	33
4.5	Adding a Guard Period to OFDM	34
4.6	The Problem of Wideband Transmission	
	On Single Carrier	35
4.7	Multicarrier Transmision	36
4.8	Orthogonality	37
4.9	Cyclic Prefix	38
4.10	Synchronization	39

SIMULATION

5.1	Introduction	41
5.2	Simulation Stages	41
5.3	OFDM System Architecture	43