ISSUES AND CHALLENGES OF LTE ANTENNA DESIGNS FOR USB DONGLE DEVICE

ABDUL HAFIZ BIN MUHAMAD

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA

MALAYSIA

ACKNOLEDGEMENT

In the name of Allah S.W.T, the most beneficial and the most merciful, it is with deepest serve gratitude of the Al-Mighty that gives strength and ability to complete this project.

I would like to take this opportunity to express my greatest thankful to my project supervisor, Pn. Norhayati bt Hamzah for her guidance, advices, supervision, encouragement and faith to me in accomplishing this project.

Finally, I would love to say thanks to my beloved family for their support and unending prayers and also to my beloved friends for their understanding directly or indirectly in successful completion of my project.

ABSTRACT

This thesis focuses on the design, model and the simulation of microstrip patch antenna which involves two antennas, planar antenna and planar inverted-f antenna. The specification for the proposed patch antennas is it has a frequency of 2.6GHz, FR4 substrate, an epsilon of 4.5, a substrate thickness of 1.6mm and copper thickness of 0.035mm. The simulation was done using CST Microwave Studio 2012 software. Comparative study of simulated parameters like return loss, directivity, bandwidth, and the radiation patterns were analyzed and presented in this paper. The results collected were to determine which of the antennas have the better potential of being implemented for Long Term Evolution (LTE) use.

TABLE OF CONTENT

DED	DEDICATION				
ACKNOWLEDGEMENT					
ABSTRACT					
TAB	TABLE OF CONTENT				
LIST	LIST OF FIGURE				
LIST	LIST OF TABLE				
LIST	LIST OF ABBREVIATION				
СНА	PTER 1				
INT	INTRODUCTION				
1.1	BACKC	ROUND OF STUDY	1		
1.2	PROBL	EM STATEMENT	3		
1.2.1	PROBL	EM IDENTIFICATION	3		
	1.2.2	SIGNIFICANCE OF STUDY	3		
1.3	OBJECTIVE				
1.4	SCOPE OF WORK 4				
1.5	THESIS	ORGANIZATION	4		
СНА	PTER 2				
LIT	ERATUF	RE REVIEW	5		
2.1	INTRO	DUCTION	5		
2.2	FUNDAMENTAL PARAMETER OF ANTENNA DESIGN				
	2.2.1.	RETURN LOSS	6		
	2.2.2.	BANDWIDTH	6		
	2.2.3.	RADIATION PATTERN	7		
	2.2.4,	CURRENT DISTRIBUTION	7		

i¥

2.2.7. MICROSTRIP ANTENNA SUBSTRATE CHARACTERISTIC

2.2.5. ADVANTAGE AND LIMITATION OF MICROSTRIP

2.2.6. ANTENNA FEEDING TECHNIQUES

ANTENNA

8

8

9

	2.2.8.	BASIC CONFIGURATION OF L AND P ANTENNA	10
		STRUCTURE	
2.3	LITER	ATURE REVIEW WITH ASSOCIATED WORK	11
	2.3.1.	DUAL BAND PRINTED INVERTED F ANTENNA FOR	11
		DIGITAL COMMUNICATION SYSTEM 2.4 GHZ WLAN	
		APPLICATION	
	2.3.2.	EFFECT OF VARIOUS MEANDERING SLOTS IN	12
		RECTANGULAR MICROSTRIP ANTENNA GROUND	
		PLANE FOR COMPACT BROADBAND OPERATION	
	2.3.3.	A 2.4/5-GHZ DUAL-BAND PIFA FOR PORTABLE DEVICES	13

CHAPTER 3

ME	METHODOLOGY			
3.1	INTRODUCTION			
3.2	FLOWCHART			
3.3	DESIGN SPECIFICATION			
3.4	DESIGN PROCEDURE			
3.5	SIMULATION OF THE ANTENNA			
	3.5.1	ANTENNA TYPE	21	
	3.5.2	UNIT PROPERTIES	22	
	3.5.3	WORKING PLANE	23	
	3.5.4	DESIGN SUBSTRATE	24	
	3.5.5	DESIGN GROUND PLANE	27	
	3.5.6	FREQUENCY RANGE	28	
	3.5.7	POINT OF FEED	28	
	3.5.8	WAVEGUIDE PORT	29	
	3.5.9	FARFIELD GENERATOR	30	
	3.5.10	FREQUENCY DOMAIN SOLVER	31	
3.6	FABRICATION PROCESS			
3.7	MEASUREMENT USING VECTOR NETWORK ANALYZER			