VARIATION OF TOTAL ELECTRON CONTENT (TEC) DURING DAY TIME AND NIGHT TIME

SAIFUL ADZHAR BIN ISHAK

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITY TEKNOLOGI MARA MALAYSIA

ACKNOWLEDGEMENT

I would like to express my deep and sincere gratitude to my supervisor, En Mohamad Huzaimy bin Jusoh, Lecturer in Faculty of Electrical Engineering, Universiti Technologi MARA. His wide knowledge and his logical way of thinking have been of great value for me. His understanding, encouraging and personal guidance have provided a good basis for the present thesis.

I also wish to convey my thanks to the Faculty of Electrical Engineering and special thanks to my friends for being supportive and helpful in process for preparing this thesis and project.

I would like to thank to my company Telekom Malaysia Berhad for giving me opportunity to further study at Universiti Teknologi MARA in Bachelor Degree Electrical Engineering.

Last but not least, I owe my loving thanks to my wife Rosmah binti Md Said and my beloved daughter Nur Dhia Iman, and I would like to express my heartiest appreciation to my beloved parents for their love, patience, support and encouragement along this period. Their kindness will always get a special place in our heart.

Thank you.

ABSTRACT

The ionosphere over Malaysia is unique because of its location near the equator line. Equatorial over a world are directly receive more sun radiation or ultra violet. The purpose of this project is about to study Total Electron Content (TEC) based on different time to evaluate the variation of TEC during day time and night time. The research of TEC is based on varies of data GPS from GPS receiver station Universiti Sains Malaysia(Penang), Politeknik Ungku Omar(Ipoh) and Universiti Teknologi Mara (Arau). Normally for every difference time the ionosphere will give difference value of electron. Recent studies parameter of ionosphere will change due to solar activity [1]. The sun releases electromagnetic radiation, which is absorbed by the atmosphere around the earth. This radiation has the potential to disturb or ionize the ionosphere, the outer most layer of the atmosphere, and this then affects radio waves, including VLF waves, that are reflected by the ionosphere [16].

TABLE OF CONTENTS

TOPIC				PAGE	Ξ	
DECLARATION						
ACKNOWLEDGEMNT					ii	
ABSTRACT						
TABLE OF CONTENT					iv	
LIST OF FIGURE						
LIST OF TABLE						
ABBREVIATION					x	
CHAPTER	1.0	INTRODUCTION				
		1.1	PROJECT OVERVIEW		1	
		1.2	PROJECT OBJECTIVES		2	
		1.3	PROJECT SCOPE		3	
		1.4	PROJECT SCHEDULE		4	
		1.5	THESIS OUTLINE		5	
CHAPTER	2.0	LITE	RATURE REVIEW			
		2.1	INTRODUCTION		6	
			2.1.1 THE IONOSPHERIC LAYER		7	
CHAPTER	3.0	TOT	AL ELECTRON CONTENT (TEC)			
•		3.1	INTRODUCTION			

CHAPTER	4.0	GLOBAL POSITIONING SYSTEM (GPS)			
		4.1	INTRODUCTION	16	
		4.2	GLOBAL POSITIONING SYSTEM (GPS)	17	
		4.3	SATELLITE SEGMENT	18	
			4.3.1 SPACE SEGMENT		
			4.3.2 USER SEGMENT		
			4.3.3 CONTROL SEGMENT		
		4.4	ADVANTAGE USING GPS SYSTEM IN TEC CALCULATION	20	
		4.5	EXPLAINATION OF GPS RECEIVER STATION IN MALAYSIA	20	
CHAPTER	5.0	RECE	IVER INDEPENDENT EXCHANGE (RINEX) FOR	RAM	
		5.1	INTRODUCTION	22	
		5.2	RECEIVER INDEPENDENT EXCHANGE	22	
CHAPTER	6.0	METHODOLOGY 25			
		6.1	SCOPE RANGE	27	
		6.2	PROCESSING THE RINEX FILE	30	
CHAPTER	7.0	<u>ል</u> እነ ለ ነ	LYSIS DATA AND RESULT		
Omn Ibic	7.0			20	
		7.1	RESULTS	36	

3.2

TOTAL ELECTRON CONTENT (TEC) 12