DESIGN OF TAPERED SLOT VIVALDI ANTENNA ARRAY USING FR4 SUBSTRATE

Thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons.) Electrical UNIVERSITITEKNOLOGI MARA (UiTM)

MUHAMAD RIDZUAN BIN MOHAMAD IBRAHIM FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR, MALAYSIA

%0^*>ZL&

MAY 2011

ACKNWOLEDGEMENT

All praise is to Allah S.W.T, The Most Gracious and The Most Merciful that has given me the strength, ability and patient to complete this Final Year Project.

I would like to convey my deepest gratitude, appreciation and thankful to my lovely project supervisor, Pn. Norhayati Binti Hamzah, who have been really determine to make sure that I am getting the most important information about my final project and for his invaluable suggestion, guidance, advise discussions and willing in sharing the knowledge towards for the completion and success of this project.

I also like to thanks most of the technicians from Microwave Technology Center Laboratory, for rendering their professional skills to help me in VNA test measurement and lab assistant in microwave laboratory that help me during setting up and testing the antenna using Antenna Training System.

Also to express my appreciation to my family, especially to my father and mother for give me a lot of support until I finish my study. And to thanks to my friends who has support and given their free time to help me especially for all Electrical Engineering student major in Communication and Cadet Officer of SISPA. May ALLAH S.W.T bless and reward them for their generosity.

ABSTRACT

These degree theses discuss the performance and behavior of Vivaldi antenna array for the ultra-wideband (UWB) frequency ranges. The design construction and characterization of the Vivaldi antenna by using two (2) different design but same array which is 1X2 arrays. The difference is the design of tapered slot wide end where the wide end of the tapered slot of the first design (TSA1) was to meet one another and another design (TSA2) is by adding space between wide end of the array. Then these antennas were constructed using FR4 substrates by using CST microwave software. The Vivaldi antenna produced that can be operated at X-band and using substrate that available and cheap.

TABLE OF CONTENTS

CHAPTER

1

TITLE

PAGE

TITLE	i
APPROVAL	ii
DECLARATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF SYMBOLS AND ABBREVIATIONS	xii
INTRODUCTION	1
1.1 INTRODUCTION	1
1.2 AIM AND OBJECTIVE	2
1.3 SCOPE OF WORK	2
1.4 ORGANIZATION OF THESIS	3

	LIT	ERATU	RE REVIE	W					4
	2.1	INTR	ODUCTION	1					4
	2.2	INTR	ODUCTION	IOFV	IVALD	I ANTENN.	A		5
	2.3	TAPE	REDSLOT	ANTE	NNA				7
		2.3.1	Influence	Of	The	Exponent	tial	Curve	8
		2.3.2	Influence	Of	The	Antenna	Dime	nsions	9
	2.4	FR4 S	UBSTRATE	2					10
2.5 IMPORTANT PARAMETERS OF ANTENNA					12				

2.5.1	Radiation Pattern	12
2.5.2	Return Loss	13
2.5.3	Gain	14
2.5.4	Voltage Standing Wave Ration	14
2.5.5	Efficiency	15
2.5.6	Bandwidth	15

MET	METHODOLOGY		
3.1	INTRODUCTION	17	
3.2	ANTENNA DESIGN PROCESS	17	
3.3	DESIGN EQUATION AND STRUCTURE	18	
	3.3.1 Equation in designing Process	18	
	3.3.2 Antenna Array Structure Design	19	
3.4	DESIGN AND SIMULATION PROCESS	20	
3.5	DESIGN SPECIFICATION AND SUBSTRATE	21	
	MATERIAL		
	3.5.1 Design Specification	21	
	3.5.2 Substrate Material Specification	21	
3.6	PROTOTYPE DEVELOPMENT	22	
3.7	PRACTICAL MEASUREMENTS	24	
	3.7.1 Vector Network Analysis (VNA)	24	
	3.7.2 Antenna Training Measurement System (ATMS)	25	

RESULT AND DISCUSSION		26	
4.1	INTRODUCTION	26	
4.2	RETURN LOSS	26	
4.3	VOLTAGE STANDING WAVE RATIO (VSWR)	28	