NOVEL SPACE TIME FREQUENCY DIVERSITY FOR MULTIPLE INPUT MULTIPLE OUPUT-ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (MIMO-OFDM) BY USING EQUALIZER

This thesis is presented in partial fulfilmeiit for the award of Bachelor in Electrical Engineering (Honours) UNIVERSITI TEKNOLOGI MARA (UiTM)

MOHAMMAD YAZZED BIN AKHMAT FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

First of all, I would like to grace the Mighty Allah S.W.T, the only beneficent God for helping me faced all the circumstances during the research and fulfils my hope to complete my Final Project successfully. Alhamdulillah.

I would like to express my greatest appreciation to supervisor, Puan Azlina binti Idris for her supervision, knowledge, advice, guidance and opinions throughout this project. Her enthusiasms are specially recognized and without her cooperation, this project may not succeed.

I would like to thank my beloved wife, Puan Siti Aminah binti Ibrahim and my beloved childrens, Mohammad Fakhri Shafiq bin Mohammad Yazzed and Nur Fatin Nadiah binti Mohammad Yazzed for their understanding, support and encouragement in completing this project.

I am would like to acknowledge the Master student, Encik Meor for his cooperation and information during the project. Last but not least, my deepest appreciation goes to all my colleagues who have given me ideas, support and encouragement throughout this project. Thank you very much and may Allah bless all of you.

ABSTRACT

This project proposes novel space-time-frequency block codes (STFBC) for multiantenna orthogonal frequency-division multiplexing (OFDM) transmissions over frequency selective fading channels (Multipath Rician and Multipath Rayleigh) by using QPSK modulation and a receiver equalizer. The resulting codes are to be capable of achieving maximum diversity and coding gains, while affording low-complexity decoding. The performance merits of this design is confirmed by corroborating simulations and compared with existing alternatives. In the Space Time Frequency (STF) coding schemes, assuming symbols Si, S2, S3 and S4 are transmitted a codeword constituted as Ci, C2, C3 and C4 as symbol sets, transmitted at the same time slot but over two different OFDM sub-channel frequency carriers, fcl and fc2.

TABLE OF CONTENTS

CHAPTER TITLE

PAGE

DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	ix
LIST OF ABBREVIATIONS	X

1 INTRODUCTION

2

1.1	Background			1
1.2	Objective			2
1.3	Scope	of	Project	3
1.4	Thesis Organization	on		4

LITERATURE REVIEW

2.1	Diversity		5
	2.1.1	Space Diversity	5
	2.1.2	Time Diversity	7
	2.1.3	Frequency Diversity	8
2.2 Coding			9
	2.2.1	Block Codes	9
	2.2.2	Cyclic Block Codes	10
	2.2.3	Error Correction	13
2.3	OFDM	1	15
2.4	Modul	ation	17
	2.4.1	QPSK	18

PAGE

2.5	IFFT/FFT		
2.6	Raylei	igh and Rician Distributions	23
	2.6.1	Mulipath Rayleigh Fading	23
	2.6.2	Mulipath Rician Fading	25
2.7	MIMO)	25
2.8	Selective Method		
2.9	Equali	izer	32
	2.9.1	Linear Symbol-Spaced Equalizer	32
	2.9.2	Linear Fractionally-Spaced Equalizer	33
	2.9.3	Decision Feedback Equalizer *	34
	2.9.4	Blind (CMA) Equalizer	35
2.10	Bit Er	ror Rate (BER)	36

METHODOLOGY

3.1	Block Diagram	37
3.2	Flowchart	44

RESULTS AND ANALYSIS FROM SIMULATION

4.1	Resul	Results and Analysis from MIMO-OFDM			
	with Q	with QPSK			
	4.1.1	Input Signals	46		
	4.1.2	Time Diversity (Time Interleaving)	47		
	4.1.3	Encoding and QPSK Modulation Signals	48		
	4.1.4	Time Domain Signals for MIMO-OFDM			
		With QPSK	48		
	4.1.5	Fading Channel Signals with and without			
		Equalizer	49		
	4.1.6	Output Signals	51		