SUPERVISORY DATA ACQUISITION OF TEMPERATURE AND HUMIDITY IN OIL PALM TISSUE CULTURE LABORATORY

Thesis presented in partial fulfillment for the award of the Bachelor in Electrical Engineering (Hons) of UNIVERSITI TEKNOLOGI MARA (UiTM)

NORZATINA BINTI MISMAN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR

ACKNOWLEDGEMENT

Praise to Allah Almighty with His blessing I am able to complete this project.

Firstly, I would like to thank Cik Noor Hafizah Binti Abdul Aziz as my supervisor for his guidance, assistant, advice, support and encouragement that helping me to complete this project.

My gratitude also goes to my parents and my other family for their encouragement, support and prayers. Without them I would not have the courage to face problems during completing this project.

The development of this project supported Faculty electrical engineering, Universiti Teknologi Mara (UITM) Shah Alam with appreciation to Malaysia Palm oil Board (MPOB) Bangi for collaboration.

Finally, appreciation to all my friends for their suggestions, support and ideas that they giving me. Also thank to the Malaysia Palm Oil Board (MPOB) Bangi and individual who has involve directly or indirectly during the time of completing my Final Year Project

Thanks a lot.

ABSTRACT

The tissue culture laboratory provides the oil palm industry with innovations for the production of improved planting materials and information on the molecular biology of tissue culture processes. Research has shown that factors such as temperature and humidity are critical in producing quality colonial materials using tissue culture process. Consequently, sensors are required to monitor and record the data in growth room using data acquisition monitoring system which can be real-time. Sensors will monitor critical parameters that focus on temperature and humidity that will be linked to the database and analysis software for storing and analyzing the monitored data. The sensor is low cost because it used local products and low power consumption and fabricated to suit the biological laboratory environment. The purpose of this sensor is to serve as an interface among user as the disturbance analysis program and an expert system in identifying the disturbance. The system could monitor via a wireless system and automatically display data and graph in Visual Basic and stored data in Database Access. Xbee is the automatic wireless identification method using radio waves, relying on storing and remotely retrieving data from the sensor. Eventually, this wireless (Xbee) technology system could improve the efficiency of inventory tracking and management for oil palm tissue culture growth.

TABLE OF CONTENT

DEC	CLARAT	TION	п	
ACI	KNOWLEDGEMENT			
ABS	STRACT		IV	
LIS	LIST OF FIGURES			
LIST	Г OF TA	BLES	XI	
LIST	Г OF AB	BREVIATIONS	хп	
CHA	APTER 1	INTRODUCTION	1	
1.1	BACK	GROUND OF PROJECT	1	
1.2	OBJECTIVES			
1.3	SCOPI	2		
1.4	RESEA	3		
1.5	THESIS ORGANIZATION			
CHA	APTER 2	2 LITERATURE REVIEW	6	
2.1	INTRODUCTION			
2.2	OIL PA	6		
2.3	SENSOR SHT11		8	
	2.3.1	Interface Specifications	9	
2.4	PIC 16	10		
	2.4.1	High-Performance RISC CPU	12	
	2.4.2	Special Microcontroller Features	12	

	2.4.3	Peripheral Features	12	
	2.4.4	Analog Features	13	
2.5	ZIGBEE TRANSCEIVER			
	2.5.1	Key Features	15	
	2.5.2	Specifications	16	
2.6	MICROSOFT VISUAL BASIC 6.0			
	2.6.1	Microsoft Visual Data Tools	19	
	2.6.2	Middle Tier Components and Microsoft Transaction Server	19	
	2.6.3	ActiveX Data Objects (ADO)	20	
	2.6.4	Data Sources and Data Controls	20	
	2.6.5	Dynamic Data Binding	20	
	2.6.6	Presenting Data to the End User	21	
2.7	DATAI	BASE ACCESS	22	
CHA	APTER 3	METHODOLOGY	25	
3.1	INTRODUCTION			
3.2	DIAGRAM ALL PROCESS 2			
3.3	3.3 HARDWARE DESIGN			
	3.3.1	Component Lists	26	
	3.3.2	PCB Design Base Xbee Interface with Voltage Regulator	26	
	3.3.3	Soldering	28	
	3.3.4	Transmitter Parts	29	
	3.3.5	Complete Hardware	32	
3.4	SOFTW	ARE DEVELOPMENT	33	
3.5	CREATING THE PROJECT		35	
3.6	APPEARANCE FROM VISUAL BASIC 3			
3.7	COMMUNICATION PORT			
	3.7.1	Port Identification	39	
		vi		