UNIVERSITI TEKNOLOGI MARA

MINIMIZE THE INTER-CELL INTERFERENCE IN CLOSE PROXIMITY CELL USING DYNAMIC FRACTIONAL FREQUENCY REUSE METHOD

RATNA ANDARIENA BT HASSAN

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Telecommunication and Information Engineering

Faculty of Electrical Engineering

July 2015

ABSTRACT

Close Proximity is emerging as a cost effective solution for satisfying the huge demands of mobile data. It can be deployed at any place where mobile traffic is required without the need for cell planning. However, coexistence of many uncontrolled small-cells using the same licensed frequency band can result in serious interference problems. In order to utilize small-cell efficiently, it is highly desirable that the small-cell can self- organize the network and mitigate interference automatically. This paper is proposing a dynamic fractional frequency reuse (DFFR) method for reducing the inter-cell interference (ICI) automatically. With reference to dynamic fractional frequency reuse (DFFR), each cell is separated into two regions identified as super region and regular region. For regular region, it is separated into three parts equivalent to the three sectors. The proposed method has evidently provided a comparable performance with Fractional Frequency Reuse (FFR) through simulation. Simulation results have verified the effectiveness of the proposed method.

ACKNOWLEDGEMENT

I would like to express my gratitude to Dr Azlina bt Idris, for her guidance throughout the project and thanks to all authors from whom I obtained all the information for this study through their writings, documentations and slide presentations.

I would also like to extend my thanks to my beloved husband, Mohd. Hafizul Fadli Bin Mohd Fakri for his continuous support, unconditional love and and prayers. Thanks to my daughter, Nur Hamani Syifa and Nur Imani Syauqani; my son, Fawwaz Iqbal Walyullah ; my both parents and parents in law and siblings for the understanding throughout my study.

Finally, the greatest thanks to all my classmate EE700 for the priceless support in making this thesis success.

TABLE OF CONTENTS

							PAGE
AU		m					
AB	STRA	ACT					
ACKNOWLEDGEMENT							
TABLE OF CONTENTS							VI
LIST OF FIGURES							
LIS	ST OF TABLE						
LIS	ST OI	F ABBRE	VIATIO	N			X
СН	[APT]	ER ONE:	INTRO	DUCTION			1
1.1	Bac	kground (Of Study				1
1.2	Proł	olem State	ement				2
1.3	Obj	ective		Of	Research		3
1.4	Res	earch Sco	pe And Li	mitation			4
1.5	Out	line Of Th	iesis				5
СН	[APT]	ER TWO	: LITER	ATURE REV	IEW		6
2.1	Intro	oduction					6
2.2	Evo	olution	Of	Mobile	Communication	Network	6
2	2.2.1.	Zero Ger	neration (DG) Network S	System		6
2	2.2.2.	First Ger	neration (1	G) Network S	ystem		7
2	2.2.3.	Second (Generatior	n (2G) Networ	k System		7
2	2.2.4.	Third Ge	eneration ((3G) Network S	System		9
2	2.2.5.	Fourth C	Generation	(4G) Network	x System		9
2.3	Long	g Term Ev	volution (I	Lte)			10
2.4	Inter	ference					12
2	2.4.1.	Co-chan	nel Interfe	erence			12
2	2.4.2.	Adjacent	t-channel	Interference			13

2	43	Inter-cell Interference	13					
25	2.5. Frequency Reuse							
2.5 7	5 1	Partial Frequency Reuse	16					
2	5 2	Soft Frequency Reuse	10					
2	53	Eractional Erequency Reuse	19					
2	5.4	Adaptive Fractional Frequency Reuse	20					
2	5 5	Dynamic Fractional Frequency Reuse	20					
26	Con	Inclusion Of Literature Review	21					
2.0	Con	clusion of Eliciature Review	23					
~								
СН	APT	ER THREE: RESEARCH METHODOLOGY	24					
3.1	Intro	oduction	24					
3.2	Resource Allocation							
3.3	Flov	W Chart Of Algorithm	27					
3.4	Soft	ware Description	28					
3.5	Sim	ulation Process	29					
3.6	Con	clusion	30					
СН	APT	ER FOUR: RESULTS AND DISCUSSION	31					
4.1	Intro	oduction	31					
4.2	Ana	lysis Simulation Result	32					
4	.2.1.	Comparison of capacity base on the user distance and base station						
		power for Single Reuse and Frequency Reuse	32					
4	.2.2.	Effect of interference base on comparison bit error rate and base						
		station power	37					
4	.2.3.	Effect of number of user, base station power and the distance for						
		DFFR and FFR	38					
4	.2.4.	Effect of user within the user power and distance for DFFR	41					
4	.2.5.	Effect of sub-bands on the number of users the system can suppor	t 43					

4.2.6. Comparison between bit error rates and base station power for DFFR,FFR effect of user within the user power and distance for DFFR 44

45

4.3 Conclusion