PRODUCTION OF BIOETHANOL FROM COCONUT (Cocos nucifera) HUSK BY ENZYMATIC HYDROLYSIS USING Aspergillus niger

ANIS ATHIRAH BINTI BAHRI

BACHELOR OF SCIENCE (Hons.) BIOLOGY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JANUARY 2016

ACKNOWLEDGEMENTS

Bismillahirrahmanirrahim

First and above all, I praise to Allah SWT, for providing me this opportunity and granting me the capability to proceed successfully. This thesis appears in this current form due to the assistance and guidance of several people. I would like to offer my sincere thanks to all of them. I would like to express my deepest gratitude to my supervisors, Miss Siti Suhaila binti Harith and Miss Nurul Aina binti Ismail, for their excellent guidance, caring, patience and providing me with an excellent atmosphere for doing my research. Mr. Suhairi bin Shuib and Mr. Norhafidzan bin Mahbob, i greatly appreciate for the guidance and kindly answer my general questions through conducting my research. I am also indebted to UiTM Jengka, Pahang for providing me with the facilities, labs, machines and apparatus needed for completing my thesis.

I would like to thank my parent, Bahri bin Chik and Sakinah binti Ismail who always supporting and encouraging me with their best wishes. Lastly, I would like thank my friends who willing to help and give their best suggestion.

Anis Athirah binti Bahri

TABLE OF CONTENTS

			PAGE
TAI LIS LIS LIS ABS	BLE OF C T OF TA T OF FIG		i ii iv v vi vii viii
CII	ADTED 1	WITHOUTON	
1.1		: INTRODUCTION	1
1.1	_	und Study Statement	1 3
1.3		ance of the Study	4
1.4	_	es of the Study	6
СН	APTER 2	: LITERATURE REVIEW	
2.1	Bioethanol		7
	2.1.1	Method of bioethanol production	8
	2.1.2	•	10
	2.1.3	Current development of bioethanol production	12
2.2	Coconut (Cocos nucifera) Husk		14
	2.2.1	Composition of coconut husk	15
2.3		lus niger as Producer of Cellulose	16
2.4	Yeast (So	accharomyces cerevisiae) as Agent of Fermentation	17
CHA	APTER 3	: METHODOLOGY	
3.1	Materials	s & Equipment	19
	3.1.1	Chemicals	19
	3.1.2	Apparatus and Instrument	19
3.2	Methods		20
	3.2.1	Pretreatment of young coconut husk for ethanol production	20
	3.2.2	Inoculum preparation of Aspergillus niger	22
	3.2.3	Simultaneously enzymatic hydrolysis (conversion of cellulose to monomeric sugar)	23
	3.2.4	Reducing sugar determination	24

		3.2.4.1 Dinitrosancyche acid (DNS) method	24	
	3.2.5	Inoculum preparation of Saccharomyces cerevisiae	26	
	3.2.6	Fermentation process (conversion of monomeric sugar	27	
		to ethanol		
		3.2.6.1 Fermentation ethanol estimation by Potassium	28	
		Dichromate Method		
	3.2.7	Distillation	28	
	3.2.8	The identification of bioethanol by using Fourier	29	
		Transform Infrared Spectroscopy (FT-IR spectroscopy).		
		RESULTS AND DISCUSSION	•	
4.1	Introduct		30	
4.2		f Mechanical and Alkaline Pretreatment on Cellulose	30	
		e and Producing of Reducing Sugar		
4.3		Enzymatic Hydrolysis on Producing Reducing Sugar	32	
4.4	Effect of	Fermentation Process	34	
	4.4.1	The glucose uptake by Saccharomyces cerevisae	34	
	4.4.2	Effect of different on the production of bioethanol	35	
4.5		at would Effect on The Bioethanol Production	37	
4.6		nation of Bioethanol Using Fourier Transform Infrared copy (FTIR)	38	
	Бресиоз	copy (1 Tik)		
CHA	PTER 5 :	CONCLUSIONS AND RECOMMENDATIONS	41	
CITI	ED REFE	RENCES	42	
APP	APPENDICES			
CUR	CURRICULUM VITAE			

ABSTRACT

PRODUCTION OF BIOETHANOL FROM COCONUT (Cocos nucifera) HUSK BY ENZYMATIC HYDROLYSIS USING Aspergillus niger

Coconut (Cocos nucifera) husk were abundant in Malaysia and it was employed as raw material in production of bioethanol. The conventional ethanol from petroleum-based would cause environmental hazard and it was known as nonrenewable resource. The objectives of this study to synthesis bioethanol from coconut husk, to determine the ability of Aspergillus niger in hydrolysis of cellulose into glucose and to determine the optimum temperature for fermentation process. There were four steps that should be followed sequentially in order for production; there were pretreatment, enzymatic hydrolysis, fermentation and distillation. Within seven days of hydrolysis process, the result showed that, the reducing sugar production was increased from 0.01 mg.ml⁻¹ to 1.60 mg.ml⁻¹. The temperature for fermentation process was manipulated into three different temperatures, 26°C, 30°C and 34°C. Among those three (3) temperatures, 26°C showed the highest concentration of bioethanol, 0.27%. Bioethanol from coconut husk showed peak at 3434.06 nm. It indicated the presence of of hydroxyl group (OH) which was the properties of ethanol. As a conclusion, Aspergillus niger had the ability to hydrolyse cellulose into monomeric sugar and 26°C was determined as the optimum temperature for the fermentation process.