SHOULDER PROSTHESIS STEM DESIGN BASED ON ANTHROPOMETRIC MEASUREMENT DATA FOR ASIAN POPULATION

RUSHAFINAS BINTI ABU BAKAR

(2007271096)

A thesis is submitted in partial fulfillment of the requirement for the award of Bachelor Engineering (Hons) (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > MAY 2010

ACKNOWLEDGEMENT

First of all, I would like to express my sincerest gratitude especially to my supervisor, En. Abdul Halim bin Abdullah, for his encouragement and insightful guidance. I would like to thank for valuable advice and encouragement throughout the progress of this thesis and also entrusting me to write this thesis successfully.

I also would like to extend my special thanks to all my beloved friends in Faculty of Mechanical Engineering for helps and giving support to me to complete this thesis. The experiences that I received will certainly be a part of me that I will appreciate.

Last but not least, I am thankful to all my family members for their moral support and also to those people who are contributing for their kindness and cooperation. Special thanks are particularly due to the following organization and persons, for without their kind generosity and support in providing me with the data, various technical paper and theses, it would not have been possible for me to complete this thesis..All contributions have been most meaningful to me and your support gave me the strength to persevere. Thank you all very much.

ii

ABSTRACT

The main indication for a shoulder replacement is pain relief. Occasionally, shoulder replacement surgery is needed for certain fractures around the shoulder, but most shoulder replacements occur after years of wear, tear and dislocation of the glenoid joint on the shoulder. The humeral head rarely can dislocate from the glenoid component because of the different mismatch sizes of prosthesis stem with the patient. The aim of this study is to see the implication of the Asian proximal humerus geometric to the previous shoulder prosthesis design and construct a possible size of shoulder prosthesis stem for Asian. The scope of this study is to perform the Finite Element Analysis on Asian and Caucasian shoulder with the implemented implant. The dimension of shoulder was based on previous Anthropometric measurement data. The shoulder prosthesis used in this study is a Zimmer Anatomical Shoulder Systems. It's the third generation of stem designs. The material was used is Titanium Alloy Ti-6A1-4V. The loading that has to be considered is muscle force at average body weight. The distal end of the humerus is fixed. Results, shows that the stress distribution of shoulder with implemented stem. Analysis of this shoulder is sufficient to study the stress behavior of the TSR on humerus bone. The stresses for the TSR on humerus bone were reduced at modified design size compared to existing design size.

TABLE OF CONTENT

CONTENTS	PAGE
PAGE TITLE	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv
LIST FIGURES	vii
LIST OF TABLES	ix

CHAPTER 1 INTRODUCTION

1.0	General			1
1.1	Problem statement			2
1.2	Objectives			3
1.3	Scope	of	study	4

1.4 Significance of Project 4

CHAPTER 2 LITERATURE REVIEW

2.0	Introduction					5	
2.1	Shoulder Anatomy				6		
2.2	Diseases				7		
2.3	Shoulder Replacements					10	
2.4	Shoulder Replacement Surgery					15	
2.5	Risks	of	a	total	shoulder	replacement	16
2.6	Typical A	Anthrop	ometri	c Measure	ement Method	to Measure	
	Humerus Geometric					19	

CHAPTER 3 METHODOLOGY

3.1	Introduction	23
3.2	Finite Element Modelling	25
3.3	Material	29
3.4	Boundary Condition	29
3.5	Force Without Torsion	30
3.6	Von Misses Stress, Total Displacement	31

CHAPTER 4 RESULT AND DISCUSSION

4.1	Introduction					32
4.2	Determination	of	Prosthetic	Mismatch	Location	33
4.3 F	Finite Element Ana	lysis				34