UNIVERSITI TEKNOLOGI MARA

NODE CLONING DETECTION TECHNIQUE IN TRUSTED SENSOR NETWORK

SYAIDAHTUL BADRIYAH AZIZ

Dissertation submitted in partial fulfilment
Of the requirements for the degree of
Master of Science in Telecommunication
and Information Engineering

Faculty of Electrical Engineering

July 2015

ABSTRACT

The evolution of technology in sensor node due to the transistor technology advancement enabled the emerging of diverse wireless application in human life. However, these create a much more vulnerable environment in daily life especially by the user. Wireless sensor network built of several to thousands tiny nodes that are communicate to each other. The malicious acts to steal anothehparty confidential data are motivated by their different background and need. Physical attack, such as node cloning gives the adversaries another effort to steal the secret key that is used to decrypt any encrypted data by joining into the network system. There is a lot of research that tried to minimize and revoke the node clone deployed into the network system, however it exhaust the energy and memory of the sensor. For static sensor node, knowing the location of the sensor give the advantage to detect node cloning, it is small and easily implement into the sensor program. Thus increase the life span of the node.

ACKNOWLEDGEMENT

In the name of Allah, I humbly express my deepest gratitude for the strength and guidance that He had bestowed upon me. Alhamdulillah, I have completed my project which is also a platform for me to enhance the knowledge that I had gather along the time.

Words cannot express how thankful I am for my supervisor, Dr. Yusnani Mohd Yussoff. Throughout this project, it had teach me how to not to stop learning as long as I willing to learn.

Along with this, I want to give a special appreciation to both of my parent who is my motivation in life. Their dedication had encouraged me to continue this dissertation project. I am sincerely thankful to everyone that had helped me throughout this project.

Finally, I would to appreciate Universiti Teknologi MARA and the post graduates study department by letting us using all the equipment, opportunities and offer the best hospitality while doing this project.

TABLE OF CONTENT

SUP	ERVI	SOR'S DECLARATION	j
AUT	HOR	'S DECLARATION	ii
ABS	TRAC	T	iii
ACK	NOW	/LEDGEMENT	iv
TAB	LE O	F CONTENT	v
LIST	OF I	FIGURE	vii
CHA	PTEF	R 1: INTRODUCTION	1
1.1	BA	CKGROUND OF STUDY	1
-	1.1.1	Node Architecture	1
-	1.1.2	Network Architecture	2
-	1.1.3	Security Issues in WSN	2
-	1.1.4	Node Cloning Attack	2
1.2	PRO	OBLEM STATEMENT''	3
1.3	B OBJECTIVE		4
1.4	SCOPE OF STUDY		4
1.5	OR	GANIZATION OF THESIS	4
CTT (_
		R 2: LITERATURE REVIEW	
2.1		ONE DETECTION SCHEMES	
2.2		USTED PLATFORM MODULE (TPM)	
2.3		UST MANAGEMENT SYSTEM (TMS)	
2	2.3.1	Centralize Detection Protocols	
2	2.3.2	Distributed Detection Protocols.	
2.4	AN	ALYSIS	9
CH/	APTEI	R 3: METHODOLOGY	11
		DEKELOW	11

3.2	NS2	REPRESENTATION	11
	3.2.1	NS2 Packet Representation	12
	3.2.2	Addressing Structure in NS2	13
	3.2.3	Node ID Replication Realization.	14
СН	APTER	4: LOCATION BASED CLONE DETECTION	15
4.1	ASS	UMPTION	15
	4.1.1	Network Assumption.	15
	4.1.2	Adversary Assumption.	15
4.2	LOC	CATION BASED CLONE DETECTION NETWORK MODEL	16
	4.2.3	Clone Detection.	17
	4.2.4	After Clone Detection.	17
4.3	ANA	ALYSIS*	18
	4.3.1	Security Analysis.	18
	4.3.2	Communication Overhead	18
4.4	SIM	ULATION AND RESULTS	19
4.5	SUM	MARY	23
СН	APTER	5: CONLUSION AND RECOMMENDATION	24
5.1	CON	ICLUSION	24
5.2	FUT	URE DIRECTION OF RESEARCH	25
RE	FEREN	CE	i