BANDWIDTH ENHANCEMENT OF CIRCULAR PATCH ANTENNA

This thesis is presented in partial of fulfilment for the award of the

Bachelor of Electrical Engineering (Hons)

UNIVERSITI TEKNOLOGI MARA (UITM)

SHAH ALAM, MALAYSIA

(JULY 2015)

MUHAMMAD FIRDAUS BIN SULAIMAN FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM MALAYSIA JULY 2015

ACKNOWLEDGEMENT

"In the name of Allah S.W.T, the most Gracious and The Most merciful, Peace is upon the Holy Prophet, Muhammad S.A.W"

First of all, I am grateful to Allah S.W.T for the chance to finish this final year project within given time and gain much knowledge about new studies especially in microstrip patch antenna.

Secondly, I would like to thank to the person who direct and indirectly contribute in this final year project that is En. Mohd Nor Md Tan as my project supervisor. His professional guidance, advice, concern and responsibility in giving information help me in completing the final year project. I indeed appreciate him as project supervisor for his time and helpful suggestion which gives impact to me and I had gained much knowledge in microstrip patch antenna design.

On the other hand, I would like to express my thousands appreciation to my parents for the moral support in all aspects in my lifetime. Without the love, courage and pray from them it will be worthless and difficult to complete this final year project successfully.

Last but not least, I would like to thank to all my friends for their help in making this project from the beginning to the end. Without their help to handle the software and handle Vector Network Analyzer (VNA) during measurement process I will not able to finish this final year project. InsyaAllah, I will fully utilize the knowledge that I obtained during fulfilled this project for the future.

ABSTRACT

This thesis focused on the bandwidth enhancement of Circular Patch Antenna (CPA) at resonant frequency 2.5 GHz for wireless application. Computer Simulation Tool (CST) software used to simulated the CPA design. First, the CPA was designed and simulate at resonant frequency 2.5 GHz. After the result achieved, two methods were used to enhance the performance of CPA. The first method is by adding passive element beside the patch. After the result obtained, it shows bandwidth enhancement from 31 MHz to 41 MHz. Second method is using U-shaped slot. From simulation result it shows that U-shaped slot enhance the bandwidth up to 41.7 MHz. After the simulation process, the CPA was implemented onto FR-4 material with thickness 1.6 mm and dielectric constant 4.3. Vector Network Analyzer (VNA) was used to measure the S_{11} of antenna and bandwidth. The simulation and fabrication both were then compared and analyzed. It is shows that both methods enhance the performance of CPA and by using U-shaped slot it enhance the performance of CPA more than using passive element.

Keywords: Circular Patch Antenna, CST microwave studio, simulation, substrate FR4

TABLE OF CONTENT

CONTENT	PAGE
Acknowledgement	i
Abstract	ii
Table of C contents	iii
List of Figures	vi
List of Tables	ix
List of Abbreviations	x

CHAPTER 1.0: INTRODUCTION

1.1	Background of study	1
1.2	Objectives	3
1.3	Problem statement	3
1.4	Scope of works	3
1.5	Thesis organization	5

CHAPTER 2.0: LITERATURE REVIEW

2.1	Introd	uction	6
2.2	Overv	iew	6
2.3	Microstrip Patch Antenna		8
	2.3.1	Introduction	8
	2.3.2	Advantages and disadvantages	10
	2.3.3	Circular patch antenna	11
	2.3.4	Feed technique	12
		2.3.4.1 Microstrip Line Feed	13

		2.3.4.2 Coaxial feed	14
		2.3.4.3 Aperture coupled feed	15
		2.3.4.4 Proximity coupled feed	16
2.4	Funda	mental of specification of patch antenna	17
	2.4.1	Radiation pattern	17
	2.4.2	Antenna gain	18
	2.4.3	Polarization	18
	2.4.4	Bandwidth	19

CHAPTER 3.0: METHODOLOGY

3.1	Description of work	20
3.2	Flow chart of methodology	21
3.3	Step to design antenna	22
3.4	Step to design passive element	24
3.5	Step to design U-shaped slot	25
3.6	Step to use CST software	26
3.7	Fabrication process	32
3.8	Measurement process	33
3.9	Summary	36

CHAPTER 4.0: RESULT AND DISCUSSION

4.1	Introdu	uction	37
4.2	Bandv	vidth enhancement of CPA for simulation and measurement result	38
	4.2.1	Simulation result	38