BANDWIDTH ENHANCEMENT OF MICROSTRIP PATCH ANTENNA

This thesis is presented in partial of fulfilment for the award of the Bachelor of Electrical Engineering (Hons) UNIVERSITI TEKNOLOGI MARA (UiTM) SHAH ALAM, MALAYSIA (JULY 2012)

NOOR ADILAH BINTI AHMAD FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM MALAYSIA JULY 2012

ACKNOWLEDGEMENT

"In the name of ALLAH S.W.T, The Most Gracious and The Most merciful. Peace is upon the Holy Prophet, Muhammad S.A.W."

First of all, the entire glory and honour to Allah S.W.T for bounding blessing that He has given me a chance to accomplish this final project report. With the guidance from Him, I have completed the report of Final Year Project (EEE 690) within the prescribed time.

Secondly, I would like to acknowledge the contribution of individuals during the period in finished this project. Obviously, the first person who direct and indirectly contribute in this project is En. Mohd. Nor Md Tan as my project supervisor. Thank for his professional guidance, advice, concern and responsibility in giving the information and also ideas as well as his precious time for discussion in completing the project. I indeed appreciate him as a project supervisor for his time and helpful suggestion which gives impact to me and I had gained much knowledge in microstrip antenna design, especially in my scope of research.

On the other hand, I would also like to express my thousands appreciation to my father (Ahmad Bin Ismail) and my siblings as well as my other family members for the constant support in all aspects in my lifetime. Without the love and courage from them, it will be worthless and difficult to complete this project paper. My sincere appreciation also go through to all my friends for their understanding and moral support.

Last but not least, I would like to thank again and I appreciate the guidance and assistance from the related parties in accomplishing this final year report. Insya-ALLAH, I will fully utilize the knowledge that I obtained during fulfilled this project for the future sake of my life.

î

ABSTRACT

This thesis presents the design of microstrip rectangular patch antenna with resonant frequency at 5.8GHz for wireless application. High bandwidth is one of the main requirements for wireless application. In this thesis, two different possible techniques were used to enhance the bandwidth. The first technique is using different thickness of substrate. The second technique is addition of parasitic element into antenna structure. With adding passive element, the bandwidth enhancement achieve up to 9.3%. The simulation of the microstrip rectangular antenna done by using Computer Simulation Tool (CST) Microwave Environment software and fabricate on FR4 substrate. All the simulation and measurement results are presented in this thesis to show its feasibility.

Keywords: patch antenna, CST microwave studio, fabrication, microstrip, simulation, substrate FR-4

TABLE OF CONTENTS

CONTENT	PAGE
Acknowledgement	i
Abstract	ii
Table of Contents	iii
List of Figures	vi
List of Tables	ix
List of Abbreviations	х

CHAPTER 1.0: INTRODUCTION

1.1	Background of Study	1
1.2	Objective	3
1.3	Problem statement.	3
1.4	Scope of work	4
1.5	Thesis Organization	5

CHAPTER 2.0: LITERATURE REVIEW

2.1	Introduction			6
2.2	Overv	iew	6	
2.3	Microstrip Patch Antenna			8
	2.3.1	Introduction	n	8
	2.3.2	Advantages	and disadvantages	11
	2.3.3	Feed techni	ques	12
		2.3.3.1	Microstrip line feed	12
		2.3.3.2	Coaxial feed	13
		2.3.3.3	Aperture coupled feed	14
		2.3.3.4	Proximity coupled feed	15

2.4	Funda	16	
	2.4.1	Radiation pattern	16
	2.4.2	Antenna gain	17
	2.4.3	Polarization	17
	2.4.4	Bandwidth	18

CHAPTER 3.0: METHODOLOGY

3.1	Description of work			20
3.2	Flow Chart of Design Methodology			21
3.3	Step to design the antenna			22
3.4	Step to use CST software			24
3.5	Fabrication process			29
3.6	Measurement process			30
3.7	complete patch antenna			34
	3.7.1	Simulation part		35
		3.7.1.1	Without passive element	35
		3.7.1.2	With passive element	35
	3.7.2 Measurement part			36
3.8	8 Summary			36

CHAPTER 4.0: RESULT AND DISCUSSION

4.1	Introd	uction		
4.2	simulation part			38
	4.2.1	Bandwidth enhancement by using different thickness		38
		4.2.1.1	Before optimization	38
		4.2.1.2	After optimization	42
	4.2.2	Bandwidth enhancement by adding passive element		51
4.3	Measurement part			59