DESIGN OF MICROSTRIP LOWPASS FILTER AT 3 GHz FOR WIRELESS COMMUNICATIONS

This thesis is presented as a partial fulfilment for the award of the Bachelor in Electrical Engineering (Hons.) UNIVERSITI TEKNOLOGI MARA

NORMASNI BINTI AD FAUZI Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN October 2004

ACKNOWLEDGEMENT

The completion of this project marks the end of an invaluable learning experience for me. I would like to extend my gratitude to all those who helped make throughout the journey.

I am indebted to my supervisor Encik Mohd Nor Md Tan and Dr Zaiki Awang; they had guided me over a year in the realized of my final project. I am grateful for their enthusiasm and constructive critism.

I want to thank to my parent and to all my friends, for their tremendous support. A special thank to laboratory technician Puan Fauziah from Universiti Kebangsaan Malaysia for her slot of fabrication techniques.

Sincerely no words could be said for the things that you all have done for me. I am greatly indebted for all the favors and supports. Thank you and May ALLAH Bless you.

ABSTRACT

The purposes of this project are to design, simulate, fabricate and measuring the output response of the Microstrip Lowpass Filter. The filter is intended to operate with cut-off frequency of 3 GHz, a stopband attenuation of 30 dB and 0.5 dB of passband attenuation. The ripple passband is to be 0.0432 dB. The major design process is aided by CAD packages called *HP/Eesof Libra* and *Sonnet Lite*. The microstrip laminates used as '*Duroid/Rogers 5872*' with 0.5 mm substrate thickness and relative permittivity ξ_r equal to 2.33. The filter is then measured using a *Wiltron Scalar Network Analyzer* to obtain its characteristics.

TABLE OF CONTENTS

DECLARATION	ïi
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	Ŷ
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xii

CHAPTER

PAGE

1 INTRODUCTION

1.1	Microstrip Circuit		1
1.2	Computer Aided Design (CAD) of Microwave Circuit		
	1.2.1	Sonnet V6.0a	5
	1.2.2	New.dxf CAD Import Modules	5
	1.2.3	Eagleware Synthesis Software	5
	1.2.4	HP-Eesof (HP Range)	6
1.3	Metho	od of Simulations	6
	1.3.1	Method of Moments (MoM)	6
	1.3.2	Transmission Line Modeling (TLM)	7
	1.3.3	Finite Elements (FEM)	8
1.4	Scope	e of Thesis	9

2 MICROSTRIP

2.1	Introd	uction	10
2.2	Strip-Type Transmission Line		12
	2.2.1	Asymmetrical Strip Transmission (microstrip)	12

2.3	Substrate Material		13
2.4	Losses in Microstrip		14
	2.4.1	Dielectric Loss (α_d)	14
	2.4.2	Conductor Loss (ac)	14
	2.4.3	Radiation Loss	14

3 FILTER

3.1	Introduction		16
3.2	Ideal Filter		17
3.3	Types	18	
3.4	Microstrip Lowpass Filter		19
	3.4.1	Filter Specifications	20
	3.4.2	Common Approximation Types of Filter	22
3.5	Prototype Structure of Microstrip Lowpass Filter		23

4 DESIGN PROCEDURES

4.1	Introduction	24
4.2	Design Stage	25
4.3	Circuit Realization	27
4.4	Optimization Stage	32

5 FABRICATION

5.1	Introduction		33
5.2	The Fabrication Technique		
	5.2.1	Laminating Process	35
	5.2.2	Ultra Violet Process	35
	5.2.3	Developing Process	36
	5.2.4	Etching Process	37
5.3	3 Grounding		37