UNIVERSITI TEKNOLOGI MARA

MODELLING OF THE CARRIER MOBILITY OF L. LEUCOCEPHALA WOOD PLASTIC COMPOSITE (WPC) FOR PHOTOCONDUCTIVE ANTENNA

BUSMINA BALKIS BT ABD HADI

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

July 2014

ABSTRACT

Photoconductive antennas are most common devices used for generation and detection of Terahertz (THz) radiation and somehow have some similarity to the conversional RF/microwave antennas on the other hand, they also somehow different from the RF/microwave antennas in terms of the feeding technique. There are limitation on this antenna which is low efficiency and difficult to obtain high power. Study of the carrier mobility of photoconductive antenna substrate was significant to enhance antenna performance. This paper is aim to modelling carrier mobility of *Leucaena Leucocephala* Wood Plastic Composite (WPC) as photoconductive antenna substrate, using regression method and error bars within two samples with same density composition; 70% of polypropylene and 30% of *L. Leucocephala* filler Wood were analyzed. A simple model reproduces to predict the measured behavior.

ACKNOWLEDGEMENTS

To my lord Allah S.W.T My wonderful parents, family and friends Supportive my office mate (JKE PSIS) Thank to supervisor for constant guidance, endless support, ideas, motivation and encouragement

TABLE OF CONTENTS

APPROVAL	i
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS	x
LIST OF ABBREVIATIONS	xi

CHAPTER 1: INTRODUCTION

1.1	Research Background	1
1.2	Problem Statement	3
1.3	Objective of Research	4
1.4	Scope of Work	4

CHAPTER 2: LITERATURE REVIEW

2.1	Terahertz (THz) Overview			
2.2	Organic Material		8	
	2.2.1	Leucaena Leucocephala	11	
2.3	Carrier Mobility			
2.4	Carrier Mobility Measurement		13	
	2.4.1	Hall Effect Measurement	13	
	2.4.2	Time Of Fight Measurement (TOF)	15	
	2.4.3	Charge Extraction by Linearly Increasing Voltage (CELIV)	15	
2.5	Previous Research on Carrier Mobility, Conductivity, Thickness			
	and G	raded Size With Antenna Performance	16	
	2.5.1	Carrier Mobility and Antenna Performance	16	

	2.5.2	Conductivity and Antenna Performance	17	
	2.5.3	Carrier Concentration	19	
	2.5.4	Effect on Graded and Ungraded Composite Substrate	19	
2.6	Modelling on Carrier Mobility		20	
	2.6.1	Fitting method	21	
	2.6.2	Error Bars	22	
2.7	Previo	us Study on Modelling Carrier Mobility	23	
CHA	APTER (3: METHODOLOGY		
3.1	Introdu	uction	25	
3.2	Measu	rement Data	25	
3.3	3 Project Flow Chart			
3.4	Regression Model		28	
	3.4.1	Least Squares Estimators	28	
	3.4.2	Coefficient of Determinations	29	
3.5	Model	ling Diagnosis	30	
CHA	APTER	4: RESULT AND DISCUSSION		
4.1	Introdu	uction	32	
4.2	Data A	analysis	32	
	4.2.1	Data Analysis for I-V Graph	32	
	4.2.2	Carrier Mobility	35	
	4.2.3	Resistivity	37	
4.3	Model	Validation	39	
СНА	APTER	5: CONCLUSION		
5.1	Conclusion			
5.2	Future Development			

REFERENCES