DESIGN A HAIRPIN BANDPASS FILTER FOR 5 GHZ UNLICENSED WIMAX BAND

Thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons.) UNIVERSITI TEKNOLOGI MARA (UiTM)

NOR HAYATI BINTI MALEK FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR, MALAYSIA

MAY 2009

ACKNOWLEDGEMENT

First and foremost, I would like to state my greatest gratitude to ALLAH S.W.T that gives me an opportunity to be able to complete my final year project and thesis.

I would like to express my deeply sense of gratitude and appreciation to my project supervisor, Mr. Muhammad Farid Abdul Khalid for the consistent help and guidance as well as prevision of his valuable time, encourage and patient in completing this project.

My gratitude also goes to Dr Mohd Khairul Mohd Salleh for his time and guidance in helping me to proceed with this project. All of the information provided is very useful and most appreciated.

Special thanks to the technician staffs from MTC and Fabrication Laboratory of Faculty of Electrical Engineering for providing the technical support and permissions to use all of the facilities and equipments there.

This appreciation also goes to Mohamad Fuad Mohd Ishak, Adznina Eberahim, Sarah Yasmin and other friends who provide helpful technical assistance and essential input on development of this project.

Thanks and appreciation also goes to my family for their love, supporting and encouragement in completing this project successfully. Last but not least, I would like to exclaim appreciation to those who involve directly or indirectly with this project. It is to commemorate their love that I dedicate this dissertation to them.

Thank you very much.

ABSTRACT

Nowadays, the need for high speed data packet access is increased rapidly. As the demands is increased, there are a lot of technologies arise to fulfill this demand. One of the latest technologies that just enter Malaysia's market is WiMax technology. WiMax system uses a whole new transmission technique known as OFDM that have relatively high spectrum-use efficiency. Beside the transmission technique, WiMax systems also use a high technology antenna called MIMO. With this advance technique used, a proper filtering needs to be produced. The filters also need to be small in size and compact due to the demand of the industry and the size of the board.

This project presents a hairpin bandpass filter design for 5 GHz unlicensed WiMax band. The filter is designed at 5.788 GHz centre frequency, with a bandwidth of 125 MHz bandwidth that is about 0.02% of its centre frequency, 0.1 dB ripples and consists of 3 elements. It is then simulated using Computer Simulation Technology (CST), then be fabricated on Roger 4350B that have a dielectric constant, ε_r of 3.48 and substrate thickness, *h* of 1.524 mm. The filter is then being measured using Vector Network Analyzer (VNA) and the measurement results show a good agreement with the simulation results.

TABLE OF CONTENTS

DECLARATION	iii
DEDICATION	iv
ACKNOWLEGDEMENT	v
ABSTRACT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xii

CHAPTER

1 INTRODUCTION				1
	1.1	BACKGR	OUND STUDY	1
	1.2	PROBLEN	A STATEMENT	4
	1.3	OBJECTI	VES	4
	1.4	SCOPE O	FWORKS	5
	1.5	THESIS O	RGANISATION	
2	WIMAX	TECHNOLO	GY	
	2.1	2.1 HISTORY OF MICROWAVES		
	TECHNOLOGY			7
	2.2	WIMAX OVERVIEW		
	2.3	WIMAX FORUM		
	2.4	WIMAX BAND		
	2.5 WIMAX EVOLUTION IN MALAYSIA			
	2.6 COMPARISON BETWEEN WIMAX AND 3G			
		TECHNOLOGY		13
		2.6.1	Advantages of 3G Cellular System	13
		2.6.2	Advantages of Mobile WiMax System	14

3 HAIRPIN FILTER THEORY

	3.1	FILTER THEORY		
	3.2	SCATTER	18	
	3.3	MICROSTRIP TRANSMISSION LINES		
		3.3.1	Quasi-TEM Approximation	21
		3.3.2	Effective Dielectric Constant and	
			Characteristic Impedance	21
	3.4	3.4 MICROWAVE FILTER		
	3,5	BANDPASS FILTER		
	3.6	HAIRPIN	FILTER	26
4	METHOD	OLOGY		29
	4.1	INTRODU	JCTION	29
	4.2	FLOWCH	ART OF HAIRPIN BANDPASS FILTER	29
		DESIGN		
	4.3	DESIGN I	PROCEDURE	31
	4.4	SIMULAT	TION	35
	4.5	FABRICA	TION	38
	4.6	CALIBRA	ATION	40
	4.7	MEASUR	EMENT	40
5	RESULTS	AND DISC	USSIONS	42
	5.1	SIMULAT	TION RESULTS	42
	5.2	MEASUR	EMENT RESULTS	43
	5.3	DISCUSS	IONS	46
	5.4	IMPROVE	ED FILTER DESIGN	47
6	CONCLUS	ION AND	FUTURE DEVELOPMENTS	50
	6.1	CONCLU	SION	50
	6.2	FUTURE	DEVELOPMENTS	51
RF	FERNCES			52
AF	PENDIXES			54