UNIVERSITI TEKNOLOGI MARA

SINGLE RING DUAL-BAND BANDPASS FILTER WITH MEANDER FOR WLAN APPLICATION

MOHD MUSALMAN BIN ABDULLAH SANI

Dissertation submitted in partial fulfilment requirements for the degree of Master of Science in Telecommunication & Information Engineering

Faculty of Electrical Engineering

July 2014

ABSTRACT

A single ring resonator dual-band bandpass filter using quarter-wavelength resonators suitable for WLAN applications is presented in this paper. Both side of ring resonator consist of quarter-wavelength parallel coupled lines. In further reducing the size of the filter, meander structure is applied to an existing design. Using different number of meander slots, a microstrip dual-band single ring resonator are applied and realized on FR4 substrate with thickness of 1.6 mm and dielectric constant of 5.4. The proposed design is to suite filter operating frequencies at 2.5 GHz and 5.2 GHz. Simulation is carried out in analysing the performance of the design using Advance Design System (ADS) and fabrication is done to validate the topology.

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation and thank to everyone who had contributed to the successful completion of this project. I would like to express my gratitude to my supervisor, Puan Zuhani Bte Ismail Khan on her invaluable advice, guidance and enormous patience throughout the development of this project. Without her supervision and constant help this project would not have been possible.

In addition, I would also like to express my gratitude to my loving family, parent and friends who had helped and given me encouragement. This dissertation would not been success without their emotional and unconditional support through hard time. Furthermore, special thanks to Universiti Teknologi MARA (UiTM) staffs especially laboratory assistants that helped me in carry out whole project.

TABLE OF CONTENTS

CONFORMATION BY SUPERVISOR	ii
AUTHOR'S DECLARATION	ili
ABSTRACT	vi
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLE	ix
LIST OF FIGURE	x
LIST OF SYMBOLS	xiv
LIST OF ABBREVIATION/NOMENCLATURE	xv

CHAPTER ONE: INTRODUCTION

1.1	Preamble	1
1.2	Background	2
1.3	Problem Statement	3
1.4	Project Motivation	4
1.5	Aims And Objectives	5
1.6	Scope Of Project	5
1.7	Research Methodology	6
1.8	Flow Chart Of Project Activities	8
1.9	Thesis Organisation	10

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	11
2.2	Dual-Band Bandpass Filter	13

CHAPTER THREE: SINGLE RING DUAL-BAND BANDPASS FILTER

3.1	Introduction	32
3.2	An Ideal DBSRR Structure	33
3.3	Simulation Results	35
3.4	Proposed Ideal DBSRR Filter Configurations	38
3.5	Fabrication Result	39

CHAPTER FOUR: SINGLE RING DUAL-BAND BANDPASS FILTER WITH MEANDER

4.1	Background	41
4.2	DBSRR With ONE Meander Structure	42
4.3	DBSRR With TWO Meanders Structure	46
4.4	DBSRR With THREE Meanders Structure	49
4.5	DBSRR With FOUR Meanders Structure	52
4.6	DBSRR With SIX Meanders Structure	55
4.7	Fabrication Stage	58
4.8	Measurement Stage	59
4.9	Proposed DBSRR Filter With TWO Meanders	62
	Configurations.	
4.10	Results Analysis And Discussions	63
4.11	Simulation Results	63
	4.11.1 Filter Characteristics Pattern	63
	4.11.2 Filter Size	67
4.12	Actual Fabrication Size	69
4.13	Coupling Effect Phenomenon	72