THE OPTIMIZATION STUDY OF ELECTROCOAGULATION PROCESS ON SLAUGHTHERHOUSE WASTEWATER

MUHAMMAD AQEEF NUQMAN BIN AZIZAN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

AUGUST 2022

ACKNOWLEDGEMENT

First and foremost, praise to name of Allah S.W.T. and Peace be Upon Prophet Muhammad (SAW). Alhamdullilah, thanks to Allah S.W.T. that give me chances to do and finish this project with physical, inner heart stronger and time.

My very special thanks to my parents, who continuously pray to complete this project successfully. They also always gave me moral and economical support to finish my project and paper work without disturbance.

Besides, I would like to express my sincere appreciation to my supervisor, Dr. Wan Izhan Nawawi Wan Ismail who supervised my work, has given guidance as well as criticism, comment to improve my thesis proposal work to be more quality. With his advices, valuable suggestion, encouragement and moral support, this project can be completed. Special thanks also to co-supervisor, Prof. Dr. Hj. Khudzir Hj. Ismail for his support and guidance to accomplish this project.

Finally, millions of thanks to go to everyone, including my friends who have helped me either directly or indirectly during I finish my project, especially UiTM because give opportunities to view the challenges that I might face in the future. I hope all this experience and knowledge to be an able help me in the job later. I hope they all get reward from Allah S.W.T.

Thanks for everything.

Muhammad Aqeef Nuqman bin Azizan

ABSTRACT

OPTIMIZATION STUDY OF ELECTROCOAGULATION PROCESS ON SLAUTHERHOUSE WASTEWATER

A chicken slaughterhouse needs plenty of water to clean up the blood, feathers, and other waste products produced during the manufacturing of processed chicken. Therefore, chicken slaughterhouse wastewater discharged is suffered with certain unfavourable effects as a result of this sequence's constant repetition. Since the beneficial of electrocoagulation (EC) to the environment has being reported, many researchers have suggested EC system to be used in wastewater treatment prior discharged. However, less study was conducted on the EC of slaughterhouse wastewater for local Malaysian Industries. In this study, wastewater from a chicken slaughterhouse located in Alor Setar, Kedah was treated by using an EC process. The absorbance value, dissolved oxygen (DO) and chemical oxygen demand (COD) of the sample during EC under various conditions, including different electrode types, varying voltage levels, different treatment time, and distance between electrode was observed in this study. It was observed that the wastewater having absorbance wavelength with maximum peak of 345 nm detected by UV-Vis spectrophotometer analysis. The optimum condition for EC treatment was under Zn-Zn electrode set, 24 V, 6 min operating time and distance between electrode at 1 cm denoted as (a) conditional parameter, where the percent removal and COD removal of this parameter condition has shown the highest value (81.48% and 91.30% respectively) as compared with others. The composition and concentration of elements was detected by using ICP-OES for all samples.

TABLE OF CONTENT

	Pages
ABSTARCT	II
ABSTAK	III
ACKNOWLEDGENMENT	IV
TABLE OF CONTENTS	V
LIST OF FIGURES	VI
LIST OF TABLES	VII
LIST OF PLATES	VII
LIST OF SYMBOLS	IX
LIST OF ABBREVIATION	IX

CHAPTER 1 INTRODUCTION

1.1	Background of Study	1
1.2	Problem statement	2
1.3	Significant of Study	3
1.4	Objective of Study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Wastewater of slaughterhouse		
2.2	Current slaughterhouse water treatment		
2.3	Electrocoagulation (EC)		
	2.3.1 Principle of	Electrocoagulation	11
	2.3.2 Mechanism	of Electrocoagulation	12
	2.3.3 Advantages	& Disadvantages of EC	15
2.4	Factor effecting elec	ctrocoagulation	17

CHAPTER 3 METHODOLOGY

3.1	Chem	icals		21
3.2	Appar	atus		21
3.3	Instru	ment		21
3.4	Metho	od		22
	3.4.1	Slaughterh	ouse Wastewater Sampling	22
	3.4.2	Slaughterh	ouse Wastewater Sample Analysis	22
	3.4.3	COD Reag	ent Preparation	23
	3.4.4	Slaughterh	ouse wastewater Treatment Preparation via EC	23
		3.4.4.1	Effect of Different Electrodes	24
		3.4.4.2	Effect of Distance of Electrode	25
		3.4.4.3	Effect of Current Density	25
		3.4.4.4	Effect of Treatment Time	26

CHAPTER 4 RESULT AND DISCUSSION

4.1	Wavelength of Maximum Absorbance	27
-----	----------------------------------	----

CHAPTER 1

INTRODUCTION

1.1 Background of study

The decreasing of fresh water becomes a world issue as it ranks fourth place by the World Economic Forum due to its effect towards the society till nowadays (Tahreen, 2020). Human and ecosystem are not the only one affected by the decreasing source of available fresh water, but it even gives impact to the world economy (World Economic Forum, 2019). Moreover, the United Nation (UN) have realised issue regarding fresh water crisis as it be their sixth goal under Sustainable Development Goals movement to achieved by 2030 (Synthesis Report, 2018). It is proven that the rapid growth of urbanisation and industries mostly help to improve the global economy. Nevertheless, the improper ways to handle waste and poor waste treatment by human act as them ignore the environment condition will burden the world economy and also contribute to the fall of ecosystem sustainability by effecting the climate change (Tahreen , 2020).

It is a constant challenge to provide most of the population on earth with a clean water in 21st century (Smalley, 2004). This is because most of the river has been contaminated with effluent from industrial wastewater such as slaughterhouse, dairy, food processing unit and pharmaceutical which is have a high number of impurities and can lead to dangerous effect to human health