

WIRELESS SYSTEM FOR TEMPERATURE AND RELATIVE HUMIDITY

IN OIL PALM TISSUE CULTURE LABORATORY

This thesis is presented in partial fulfillment for the award of the

Bachelor of Engineering (Hons) Electrical

UNIVERSITI TEKNOLOGI MARA MALAYSIA

NUR LIYANA BINTI RIDZUAN

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN

ACKNOWLEDGMENTS

My greatest gratitude is expressed to the supervisor, Mrs. Suzi Seroja Binti Sarnin for the encouragement, guidance, and support throughout progress of the project. A deeply appreciation is also goes to Ms. Noor Hafizah Binti Abdul Aziz for the useful assistance during progress from the initial to the final level enabled me to develop an understanding on completion of the project. Thanks to Dr. Ahmad Tarmizi Bin Hashim, Head Executive of Tissue Culture Department of MPOB for the permission given during the testing session is conducted. The staffs at MPOB were extremely helpful in assisting my experiment. Thanks also to Mr. Kamaruzaman Bin Md. Nor who have been very helpful during the troubleshooting of the project's hardware. Nevertheless, a great regards and blessings of appreciation are dedicated to my parents who had contributed during the completion of the project. Lastly, it is my pleasure to thank those who made this thesis successful with the best possible result.

ABSTRACT

As Malaysia is the main producer of the world's palm oil, the Malaysian Palm Oil Board (MPOB) had adapted the tissue culture technique in order to increase its production for the next decade. This technique was conducted inside the specific laboratory and required frequent monitoring sessions to maintain its crucial parameters in good conditions. To overcome this situation, the wireless monitoring system is developed to reduce the conscripting of manpower monitoring session by using the SHT11 sensor to produce the output data for both temperature and relative humidity parameters with direct utilization of the XBee antennas for transmitting and receiving the data in wireless form. The PIC16F877A microcontroller systems are being used to connect the SHT11 sensor and XBee antenna as the transmitter part and also connect the XBee antenna and Liquid Crystal Display (LCD) module as the receiver part to display the data measured. This system is developed for upgrading the previous wired monitoring system and overcome the manpower consumption for monitoring session to improve the global standard for the oil palm tissue culture technique.

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGMENTS	iv
ABSTRACT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	xiii

1	INTI	INTRODUCTION		
	1.1	BACKGROUI	ND OF STUDY	1
	1.2	OBJECTIVES		2
	1.3	SCOPE OF W	ORK	3
2	LITI	LITERATURE REVIEW		
	2.1	TISSUE CULTURE TECHNIQUE		4
		2.1.1 Techni	que	5
		2.1.2 Condit	ions	7
	2.2	WIRELESS S	WIRELESS SYSTEM	
		2.2.1 ZigBee	/XBee Antenna	8
		2.2.2 Standar	rd Protocol	8
		2.2.3 Comm	unication Network	9
		2.2.4 Applica	ations	11

		2.2.5	Advantages	11	
	2.3	MICR	MICROCONTROLLER SYSTEM		
		2.3.1	PIC16F877A Microcontroller System	12	
		2.3.2	Port Register	12	
		2.3.3	TRIS Register	13	
		2.3.4	Direct and Indirect Addressing	14	
		2.3.5	Memory Organization	15	
		2.3.6	Program Memory	16	
	2.4	SHT1	1 SENSOR	18	
		2.4.1	Connection	19	
		2.4.2	Measurement	19	
		2.4.3	Advantages	21	
3	мет	IETHODOLOGY			
	3.1	METHODOLOGY		22	
	3.2	HARDWARE DEVELOPMENT		23	
		3.2.1	Transmitter	23	
		3.2.2	Receiver	27	
		3.2.3	PCB Layout and PCB Board Development	31	
			3.2.3.1 PCB Making	32	
			3.2.3.2 Printing	33	
			3.2.3.3 Etching	33	
			3.2.3.4 Drilling	34	
			3.2.3.5 Assembling	34	
			3.2.3.6 Soldering	34	
			3.2.3.7 De-Soldering	35	
	3.3	SOFTWARE DEVELOPMENT		36	
		3.3.1	Build and Compile the Programming Language	37	
		3.3.2	Burning the Programming Language	38	
		3.3.3	Flow Chart of the Software Development	38	
4	RESU	JLTS A	ND DISCUSSIONS	41	

4.1	HARDWARE	41
1.1		11