UNIVERSITI TEKNOLOGI MARA

DESIGN OF MICROSTRIP PATCH ARRAY ANTENNA WITH REFLECTOR

MOHD IZWANNI BIN SARIMAN

Thesis submitted in fulfilment of the requirements for the degree of Master of Science in Telecommunication and Information Engineering

Faculty of Electrical Engineering

ABSTRACT

This paper presents a rectangular array microstrip patch antenna with parasitic reflector that able to be operated for S-band application. This antenna is designed to operate at $2.3 \, \text{GHZ}$ by using microstrip line feed mechanism with quarter wavelength impedance transformer to match 100Ω patch element to 50Ω input. The physical parameters of the structure as well as single, separated and conventional (no reflector) parasitic reflector are analyzed. Reflection coefficient (S₁₁), voltage standing wave ratio (VSWR), radiation pattern and efficiency for these single, separated and conventional (no reflector) parasitic reflector carried out. Results are in good agreement between simulated and measurement which validates the proposed design.

Keywords—Rectangular, Microstrip Patch Antenna, Single, Separated, Conventional, Parasitic reflector, Reflection Coefficient, bandwidth, Radiation pattern, gain, efficientcy, VSWR

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my main supervisor En. Mohd Nor Md Tan, who has continuous and generous support and trust on my capabilities. I am sincerely grateful for her advice, invaluable guidance and patience in numerous and long discussions throughout the period of my Msc research.

My appreciation to my co-supervisors, PM Dr Tarmizi bin Ali and to the entire staff of Antenna Research Group (ARG) Universiti Teknologi Mara for making my experimental successfully done.

Thousand thanks to Miss Fatimah and Eng Ahmad Azlan bin Ab Aziz for samples contributions and permission.

I would like to offer my personal and special thanks to my family especially my parents who have encouraged me over the years, believed in me and surrounded me with their love and blessing.

TABLE OF CONTENTS

Page	
CONFIRMATION BY PANEL OF EXAMINERSii	i
AUTHOR'S DECLARATION iii	
ABSTRACTiv	1
ACKNOWLEDGEMENTS	V
TABLE OF CONTENTS vi	
LIST OF TABLES	ix
LIST OF FIGURESx	
LIST OF SYMBOLS	(ii
LIST OF ABBREVIATIONS	ĺ
CHAPTER ONE: INTRODUCTION	1
1.1 Background	
1.2 Problem Statement	
1.3 Research Objectives	
1.4 Scope of Study	
1.5 Limitation Of Study	
1.6 Significance Of Study4	
CHAPTER TWO: THEORY AND LITERATURE REVIEW5	
2.1 Antenna Review	
2.2 Antenna Properties	
2.2.1 Radiation Pattern	ì
2.2.2 Bandwidth	l
2.2.3 Return Loss	
2.2.4 Gain	1
2.2.5 Directivity	
2.2.6 Voltage Standing Wave Ratio (VSWR)	

2.2 Microstrip Patch Antenna	В
2.2.1 Advantages and Disadvantages	4
2.3 Literature Review	15
CHAPTER THREE: METHODOLOGY	19
3.1 Introduction.	19
3.2 Flow Chart	20
3.2.1 Research Project	21
3.2.2 Design Project	21
3.2.2.1 Design of Conventional Antenna Array Design with Parasitic	
Reflector	21
3.2.2.2 Substrate Characteristic	26
3.2.3 Measurement Equipment	27
3.2.3.1 Vector Network Analyzer	27
CHAPTER FOUR: RESULTS AND DISCUSSIONS	29
4.1 Introduction	29
4.2 Simulation Results	29
4.2.1 Return Loss	29
4.2.2 Gain	31
4.2.3 Radiation Pattern	32
4.2.4 Voltage Standing Wave Ratio (VSWR)	33
4.3 Measurement Results	34
4.3.1 Fabricated Antenna	34
4.3.2 Reflection Coefficient (S11)	35
4.3.3 Radiation Pattern	36
4.4 Parametric Study	
4.4.1 Effect of Varying the Width and Length of the Parasitic Reflector	