HARDWARE DESIGN OF CONVOLUTIONAL ENCODER AND DECODER FOR DIGITAL COMMUNICATION SYSTEM

Project report is presented in partial fulfillment for the reward of the Bachelor of Electrical Engineering (Honours) (Communication)

of

UNIVERSITI TEKNOLOGI MARA

SAYED AZIZ BIN SAYED HUSSIN Faculty of electrical engineering UNIVERSITI TEKNOLOGI MARA 40 450 SHAH ALAM, SELANGOR

ACKNOWLEDGEMENT

In the name of Allah SWT, the beneficent, the Merciful Foremost, all praise to Allah for all the incredible gift endowed upon me and for giving the health and strength to proceed the study and enable me to prepare this thesis.

I would like to take this opportunity to thank everyone who has contributed either directly or indirectly throughout this thesis and project, my family especially my loving parents, for their understanding, support and encouragement in completing this thesis.

Specifically my thank goes to my supervisor Mr. Ir Muhammad Bin Ibrahim for his guidance, support, concern and opinions throughout this thesis. Without his cooperation, support and guidance, this project may not succeed.

I'm also indebted to Mr. Kamaruzaman B. Md. Nor, Mr. Azman B. Misroo as an instructor of Communication Lab, Mr. Zamnihar as an instructur of Digital Lab for their support in hardware design and the idea, my colleagues in the faculty and to all my loving friends especially Mohd. Heary B. Mohd. Yassin and Zurina Bt. Mohamed for their cooperation and suggestion toward completing this project.

"May god bless and reward them for their generosity"

ABSTRACT

This paper focused on Convolutional Codes as one of the error detection and correction technique that use special generator polynomial. The first generator polynomial is $X^3 + X^2 + X^1 + 1$ (1111) and the second generator polynomial is $X^3 + X^2 + 1$ (1011).

The simulation is performing using Circuit Maker for the Clock Pulse Generator to make sure the pulse is available of the D-type Flip Flop to operate. This process also is done to make sure that the pulse that we got is the suitable pulse, which is not to fast and also not too slow.

The simulation process for the encoder and decoder of this hardware is perform using XILINX Designer version 2.1 toolbox to determine the process and technique of creating a digital circuit and demonstrates how the design work in encoder and decoder.

This project is base on Convolution Codes including the theory, simulation technique and the hardware development of Convolutional Codes.

TABLE OF CONTENT

DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSRTRACT	iii
TABLE OF CONTENT	iv
LIST OF FIGURE	viii
LIST OF TABLE	ix
LIST OF ABBREVIATIONS	xi

CHAPTER

PAGE

1. INTRODUCTION

1.1 Introduction	1
1.2 Scope of thesis	2
1.3 Claude Shannon and Communication Theory	2
1.4 Digital Communication System	3
1.5 Data Communication System	4
1.6 Advantages of Digital Communication	5
1.7 Scope of Work	7

2. ERROR CONTROL IN COMMUNICATION

2.1 Introduction	8
2.2 Error Control	10
2.3 Error Control Coding	11
2.4 The Important of Error Coding	12
2.5 Errol Control Code	13
2.5.1 Convolutional Code	13

2.5.2 Cyclic Redundancy Check(CRC)	14
2.5.3 Binary Linear Block Codes	15
2.3.1 Turbo Codes	16
2.6 Types of Error Control	17
2.6.1 Forward Error Control	18
2.6.2 Feedback error Control	18
2.7 Requirement	18
2.8 Factor Influence to the Selection of Error Detection Technique	19
2.8.1 Bit Error Rate (BER)	19
29 Type of Error	20
2.9.1 Random Error	21
2.9.2 Burst Error	22
2.9.3 Systematic Error	23

3. CONVOLUTIONAL CODES OPERATION

3.1 Introduction	24
3.2 Advantage and Disadvantage of Convolution Code	24
3.2.1 Advantage	24
3.2.2 Disadvantage	25
3.3 Application of Convolutional Code	25
3.3 Operation of Convolutional Code	26
3.4.1 Tree Diagram	28
3.4.2 Trellis Diagram	30
3.4.3 State Diagram	32
3.4.5 Decoding	33
3.5 Channel Model	36
3.5.1 Binary Symmetric Channel	36
3.5.2 Gaussian Channel	39