COUPLE RING RESONATOR FOR DUAL BAND BANDPASS FILTER

Thesis is presented in partial fulfillment for the award of the

Bachelor of Electrical Engineering (Hons.)

UNIVERSITI TEKNOLOGI MARA

MUHAMAD NUR FITRY B AB JALIL FACULTY OF ELECTRICALENGINEERING UNVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR,MALAYSIA

MAY 2010

ABSTRACT

This thesis describes the design, simulation and analysis of a coupled ring resonator for dual bandpass filter for wireless application. The operating frequencies are 5 GHz and 8.25 GHz. Single bandpass approach was used in designing the filter and the simulation was carried out using CAD simulation software. The performance of the filter was simulated based on FR4 with dielectric substrate (Er) is 5.4 with substrate thickness of 1.6mm . The filter was then fabricated and measurements were made using VNA. The measurement results show good agreement with the filter specifications.

Keywords- microstrip, dual bandpass filters, couple ring resonator, CAD simulation software.

ACKNOWLEDGEMENT

In the name of Allah S.W.T, The most beneficial and the most merciful. It is with deepest serve gratitude of the A-Mighty that gives strength and ability to complete this project.

I would like to take this opportunity to express special thanks to my project supervisor, Mrs. Norfishah Bt abd. Wahab for her guidance, advice, kindness and also being helpful to guide me throughout the development of this project.

My grateful thanks also goes to Noor Zareena Zakaria and Dr Mohd Khairul, for all the help, guidance and generous time given throughout the course of completing this project.

I would like to take this opportunity to express my sincerely gratitude and appreciation to my beloved family whose love and encouragement have given me the strength to become what I am today and for their understanding and giving support through my university years.

Last but not least I would like to express my sincere thanks to my friends those who are involved directly or indirectly.

TABLE OF CONTENTS

DECLARATION	iii
DEDICATION	iv
ABSTRACT	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	x
LIST OF TABLES	xi
LIST OF ABBREVIATIONS & SYMBOLS	xii

CHAPTER	TITLE	PAGE
1	INTRODUCTION	
1.1	Background	1
1.2	Objectives	2
1.3	Scope of Works	3
1.4	Thesis Organization	3
2	FILTER THEORY	
2.0	Introduction	4
2.1	Type of Filter	4
	2.1.1 Low-pass	5

 2.1.1
 Band-pass
 6

 2.1.1
 Band-stop
 6

5

2.1.1 High-pass

2.2	Scattering Parameter	
	2.2.1 Return Loss	9
	2.2.2 Insertion Loss	10
2,3	Filter Design Specifications	11
2.4	Filter Realizations	12
	2.4.1 Butterworth Filter	12
	2.4.2 Tschebyshev Filter	12
2,5	Couple Ring Resonator	14

3 MICROSTRIP THEORY AND FITER APPLICATION

3.0	Introduction		16
	3.0.1	Stripline	17
	3.0.2	Coplanar Waveguide	18
3,1	Effect	ive Dielectric Constant	18
3.2	Micro	strip Losses	19
	3.2.1	Conductor Losses	19
	3.2.1	Radiation Losses	20
	3.2.1	Dielectric Losses	20
3.3	Bandp	bass Filter Applications	20
	3.3.1	Introduction	20
	3.3.2	The 5 GHz Band	21
		3.3.2.1 The Advantage of 5 GHz Band	21
		3.3.2.2 Regulatory Environment	22
	3.3.3	The Military Satellite	23

4 METHODOLOGY

4.0	Introduction	24
4,1	Flowchart	24
4.2	Design Procedure	 26