UNIVERSITI TEKNOLOGI MARA

IMPROVING STFBC MIMO-OFDM WITH ICI SELF-CANCELLATION SCHEME USING LEAST SQUARE ERROR ESTIMATION

NUR FARAHIAH BINTI IBRAHIM

Dissertation submitted in partial fulfilment of the requirements for the degree of

Master of Science in Telecommunication and Information Engineering

Faculty of Electrical Engineering

July 2013

ACKNOWLEDGEMENT

Firstly, praise to Allah SWT, the Almighty for the incredible opportunity bestowed upon me and for giving me promisingly good health and extended willpower to complete this project in spite of various challenges encountered during the write-up.

A special thank you to my supervisor, Dr. Azlina binti Idris for her supervision, knowledge, advice, guidance and opinions throughout the completion of this thesis. Without her help and assistance, I do believe that this project may not be where it is, at the mark of completion.

I would also like to give my utmost gratitude to my family for their understanding, support and encouragement in completing the thesis.

Also, thank you to all my friends and colleagues for your ideas, comment and understanding on the subject matter.

Last but not least, my deepest appreciation goes to everyone who is directly or indirectly involved in the completion of this thesis.

THANK YOU

ABSTRACT

Channel estimation techniques for MIMO-OFDM based on comb type pilot arrangement with LSE estimator is investigated with STF diversity implementation. The frequency offset, due to the Rayleigh fading channel, Doppler shift and oscillator synchronization in OFDM impacts its performance. This is mitigated with the implementation of the presented ICI-SC techniques and different ST subcarrier mapping. STFBC in the system exploits the spatial, temporal and frequency diversity to improve performance. Estimated channel is fed into a decoder which combines the STF decoding together with the estimated channel coefficients for equalization. The performance of the system is compared by measuring the symbol error rate with a PSK-4 and PSK-8. The results show that subcarrier mapping and ICI-SC was able to increase the system performance. LSE estimator was also able to estimate the channel coefficient at only 6 dB difference with a perfectly known channel.

TABLE OF CONTENT

CHAPTER	TITLE		PAGE
	AUT	iii	
	ACK	iv	
	ABS	Ÿ	
	TAB	LE OF CONTENTS	vi
	LIST	OF FIGURES	viii
	LIST	ix	
1	INTI	Ĭ	
	1.1	Problem Statements	3
	1.2	Objectives	4
	1.3	Scope of Project	4.
	1.4	Report Overview	4
2	T TTPT	ERATURE REVIEW	
2		-	
	2.1	MIMO-OFDM System	6
	2.2	STF Block Coding	9
	2.3	Inter-Carrier Interference	11
	2.4	ICI Reduction Methods	14
	2.5	Channel Estimation	16
	2.6	Error Estimator	19

CHAPTER	TITI	PAGE		
3	METHODOLOGY			
	3.1	System Model	20	
	3.2	MIMO-OFDM with FO	22	
	3.3	Subcarrier Mapping	26	
	3.4	ICI Self-Cancellation Scheme	28	
	3.5	Pilot Insertion	30	
	3.6	Least-Square Error Estimator	31	
	3.7	Alamouti Decoder	33	
4	RES	35		
	4.1	Subcarrier Mapping	36	
	4.2	ICI-SC Performance	37	
	4.2	Channel Estimation Performance	39	
5	CONCLUSION AND FUTURE DEVELOPEMENT			
	5.1	Conclusion	42	
	5.2	Future Development	43	
	REFERENCES		44	