UNIVERSITI TEKNOLOGI MARA

STUDY ON THE PERFORMANCE OF C-BAND ERBIUM DOPED FIBER AMPLIFIER

SAZREENA BINTI SARIBUDIN

Thesis submitted in fulfillment of the requirements for the degree of

Master of Science

Faculty of Electrical Engineering

July 2015

ABSTRACT

This work analyzed the performance of erbium doped fiber amplifier (EDFA) using

different EDF length and pump power. In this study, an EDFA simulation program has

been written in Matlab to analyze the active fiber length in around 3m, 15m, 20m, 50m,

80m and 100m to characterize the Gain, ASE power and amplifier output power versus

fiber length and input signal power variations of a forward pumping and backward

pumping. These EDFA operating in C band (1525-1565 nm) as functions of Er3+ fiber

length, injected pump power, signal input power and Er3+ doping density. The program

solves the rate and propagation equations numerically and shows the results graphically.

Thus, Gain and ASE performance of an EDFA given with its physical parameters can be

graphically obtained and the required physical parameters of an EDFA with desired

operating performance can be easily optimized.

Keywords: Optical Amplifiers, EDFA, Erbium Doped Fiber, Gain, ASE

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my main supervisor Dr Mas Izyani Md Ali, who has continuous and generous support and trust on my capabilities. I am sincerely grateful for her advice, invaluable guidance and patience in numerous and long discussions throughout the period of my Msc research. Without her encouragement, feedback, and motivation, this project would not have been completed.

Besides, I am extremely grateful to my colleagues for their supports and brilliant suggestions. Lastly, I would like to offer my personal and special thanks to my family especially my parents and my husband who have encouraged me over the years, believed in me and surrounded me with their love and blessing.

TABLE OF CONTENTS

	Page		
CONFIRMATION BY PANEL OF EXAMINERS	ii		
AUTHOR'S DECLARATION			
ABSTRACT			
ACKNOWLEDGEMENT	v		
TABLE OF CONTENTS	vi		
LIST OF TABLES	viii		
LIST OF FIGURES	ix		
LIST OF SYMBOLS	xi		
LIST OF ABBREVIATIONS / NOMENCLATURE	xii		
CHAPTER ONE: INTRODUCTION			
1.1 Research Background			
1.2 Problem Statement			
1.3 Research Objective			
1.4 Project Scope			
CHAPTER TWO: LITERATURE REVIEW			
2.1 Introduction			
2.2 Fundamental and theoretical Issues of EDFA			
2.2.1 EDFA Configuration	6		
2.2.2 EDFA Operational Principles	8		
2.2.2.1 Pump Wavelength and Absorption Spectrum	8		
2.2.2.2 Pump Mechanism	9		
2.2.3 Amplifier Noises	11		
2.2.4 Amplifier Gain Modulation	12		
2.3 EDFAs In Long-Haul Transmission Systems	13		

2.4	EDFA Calculation			13	
	2.4.1	Amplifier	Parameters	14	
	2.4.2	EDFAs D	ynamic Model	16	
	2.4.3	EDFA Ste	eady State Modeling Principles	18	
	2.4.4	Populatio	n Inversion Factor	19	
2.5	EDFA Amplifier Noises			20	
	2.5.1	ASE Nois	e Model	20	
2.6	Optica	al Fiber Communication			
CH	APTER	THREE:	METHODOLOGY		
3.1	1 Introduction				
3.2	Simula	ation Setup		23	
	3.2.1	Proposed	Work	23	
3.3	EDFA	Parameters		24	
CH	APTER	FOUR: R	ESULT AND ANALYSIS		
4.1		duction		25	
•••	4.1.1	Forward F	Pump	25	
		4.1.1.1	Gain Characteristic	25	
		4.1.1.2	ASE Power Distribution	28	
		4.1.1.3	Amplifier Performance in Pump Power 100mW	31	
	4.2.1	Backward	Pump	34	
		4.2.1.1	Gain Characteristic	34	
		4.2.1.2	ASE Power Distribution	37	
		4.2.1.3	Amplifier Performance in Pump Power 100mW	39	
CH. WOR		FIVE: CO	ONCLUSIONS AND RECOMMENDATION FUT	ΓURE	
5.6) Conch	ıcion		./13	