UNIVERSITI TEKNOLOGI MARA

DESIGN OF RECTANGULAR PATCH TEXTILE ANTENNA AT 2.45 GHz ISM BAND

MOHD NAZRY BIN MOHAMMAD

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Electrical Engineering

July 2015

ABSTRACT

A textile antenna comprises a textile substrate with a conductive patch and a ground plane and may be affixed to or integrated in clothing, furniture or other type of textile materials. In this thesis, the design of textile antennas with substrate permittivities, $\epsilon_r = 1.63$ and $\epsilon_r = 1.53$ were proposed. The rectangular patch textile antenna was designed at 2.45 GHz Industrial, Science and Medical (ISM) band (2.4 GHz -2.485 GHz) for short range communication system. Fleece and denim fabrics were used as antenna substrates and copper tapes as the conductive part of the antenna patch and the ground plane. This project also presented the effects of antenna bending at four different angles which is the main highlight of this thesis.

Keywords: Fleece fabrics, denim fabrics, microstrip patch antenna, permittivity, ISM Band, antenna bending.

ACKNOWLEDGEMENT

In the name of the almighty ALLAH, the most gracious and merciful, with his gracing and blessing had led to success be upon this thesis.

First and foremost, I would like to thank my main supervisor Dr. Muhammad Farid bin Abdul Khalid, who has continuously given me generous support and trust in my capabilities. I am sincerely grateful for his advice, invaluable guidance and patience in numerous and long discussions throughout the period of my project.

Thanks to ARG lab technician, En. Khalim and PHD student, Ahmad Azlan bin Abdul Aziz for permission and sample contributions. I also would like to thank my family members who gave me moral support and encouragement.

Thank you very much.

CONTENTS

TOP	PIC	PAGES
PRO	DJECT TOPIC	i
SUPERVISOR VERIFICATION		ii
DEC	CLARATION	iii
ABS	TRACT	iv
ACF	KNOWLEDGEMENT	v
CONTENTS		vi
LIST OF TABLES		ix
LIST	Γ OF FIGURES	X
	APTER 1: INTRODUCTION	
1.1	Background	1
1.2		2
1.3	Objective	2
1.4	Project Scope	3
CHA	APTER 2: LITERATURE REVIEW	
2.1	Introduction	4
2.2	Fabric Characteristic	5
2.3	Design Consideration	6

CHAPTER 3: METHODOLOGY

3.1	Flowchart of Methodology	
3.2	Design of Rectangular Patch Antenna	13
	3.2.1 Antenna Dimension	13
	3.2.2 Design Spesifications	14
3.3	Antenna Design Process	15
	3.3.1 Feed Substrate	15
	3.3.2 Substrate Thickness	
	3.3.3 Feeding Methods	16
	3.3.4 Material Selection	17
3.4	Fabrication Process	17
3.5	Measurement Process	18
	3.5.1 Bandwidth, VSWR and Reflection Coefficient	18
	3.5.2 Radiation Pattern and Surface Current	19
СНА	PTER 4: RESULT AND DISCUSSION	
4.1	Optimisation Results	20
4.2	Simulation Result	24
4.3	Measurement Result	
4.4	Comparison between Simulated and Measured Result	26
	For Fleece Fabric	
4.5	Radiation Pattern	27
4.6	Bending of Microstrip Patch Antenna	29
	4.6.1 Influence of Antenna Bending	32