CIRCULAR SHAPE METAMATERIAL ANTENNA WITH DEFECTED GROUND STRUCTURE (DGS)

Thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons) Electronic (Communication) Universiti Teknologi MARA

MOHAMAD HAFIZ BIN AZMAN Faculty of Electrical Engineering Universiti Teknologi MARA 40450 Shah Alam, Selangor, Malaysia

JULY 2012

ACKNOWLEDGEMENT

Praise to Allah S.WT The Most Gracious, The Most Merciful, there is no power no strength save in Allah, The Highest and The Greatest, whose blessing and guidance have helped me through the process of completing this project.

I would like to take this opportunity to express my most sincere gratitude to my project supervisor, Madam Robi'atun Adayiah Binti Awang who has persistently and determinedly assisted me during the whole course of this project. It would have been very difficult to complete this project without the enthusiastic support, insight and advice given by him.

My outmost thanks also go to my parents who has given me support and unconditional love throughout my academic years. Without them, I might not be the person I am today.

Finally, my very big thanks to all my friends for mentally support throughout the project. My special gratitude to Metamaterial group for giving me advice when I need someone to share my problems. It is of my greatest thanks that I have met these people. Thank you.

ABSTRACT

This paper presents a Circular Shape Metamaterial Antenna with Defected Ground Structure (DGS) at operating frequency of 5.4GHz. The construction of circular-shape DGS at ground plane contributes the metamaterial features to the antenna. Conventional antenna with and without DGS structure has been simulated, fabricated and measured. The simulation design has been done using Computer Simulation Technology (CST) microwave studio and both antenna were fabricated on RO3003 substrate with dielectric constant 3 and 0.75mm height. The proposed antenna was enhancing the performance the antenna in term of return loss and directivity. The minimum specification of return loss from simulated result is -10dB cutoff.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	APPROVAL	ii
	DECLARATION	iii
	ACKNOWLEDGEMENT	iv v
	ABSTRACT`	
	TABLE OF CONTENTS	vi
	LIST OF FIGURES	viii
	LIST OF TABLES	ix
	LIST OF ABBREVIATIONS	xii
	LIST OF SYMBOLS	xiii
1	INTRODUCTION	1
	1.1 BACKGROUND OF STUDY	1
	I.2 OBJECTIVE	3
	1.3 SCOPE OF WORK	663
	1.4 PROBLEM STATEMENT	3
	1.5 OUTLINE OF THESIS	4
2	THEORY AND LITERATURE REVIEW	5
	2.1 INTRODUCTION	5

	2.2	BRIE	5	
	2.3	NEGA	6	
	2.4	DEFE	CTED GROUND STRUCTURE	7
	2.5	ANTE	9	
		2.5.1	Gain	9
		2.5.2	Radiation Pattern	9
		2.5.3	Polarization	10
		2.5.4	VSWR and Return Loss	10
		2.5.5	Bandwidth	11
	2.6	PREV	PREVIOUS WORK	
		2.6.1	Small Patch Antenna on Omega structure	11
			Metamaterial	
		2.6.2	Metamaterial as Base Substrate	12
		2.6.3	Metamaterial as a Cover	13
3	METHODOLOGY			
	3.1	INTRO	16	
	3.2	METAMATERIAL STRUCTURE		
	3.3	RECT	ANGULAR PATCH ANTENNA DESIGN	22
4	RESULT AND DISCUSSIONS			
	4.1	INTRO	26	
	4.2	SIMULATION RESULT		
	4.3	MEAS	33	
		4.3.1	Vector Network Analyzer	33
		4.3.2	Fabricated Antenna Design	34
6	CONCLUSION AND RECOMMENDATION FOR			38
	FUT	URE		