HIPERLAN/2: OFDM SIMULATION USING SIMULINK

This project report is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Hons.)

UNIVERSITI TEKNOLOGI MARA

AZLAN BIN A.RAOF FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR **ACKNOWLEDGEMENT**

There were unanswered questions when the final year project started. There

were a lot of problems even when choosing the tittles of this project.

Nevertheless, through hard work and long hours without sleep, this thesis is

finally successfully produced. It could not have been done without the help of

many people; the author therefore wished to thank:

Mr. Rabi W. Yousiff, my supervisor for providing the support and invaluable

guidance towards success of this project.

Dr Dani Baba, my Digital Communication lecturer for assisting me on

completing the project.

My wonderful parents and friend, who tolerate and being patience and for

being wonderful people who have supported me on every step in my

educational career.

Azlan Bin A.Raof

98713893 KE 28

FACULTY OF ELECTRICAL ENGINEERING

UITM SHAH ALAM

II

ABSTRACT

Orthogonal Frequency Division Multiplexing (OFDM) is a new digital modulation technique, which consists of transmitting a data stream on several carriers instead of using single carrier. It is adopted in several recent digital wireless broadcast and network standards, including HiperLAN/2, IEEE802.11a and Digital Audio Broadcasting (DAB).

This project paper will explore the use of Simulink to model features of OFDM receiver design. This thesis will also discuss the implementation of OFDM in HiperLAN/2 by simulation using Simulink. It will also explore the use of Simulink to model features of OFDM receiver designs, in packet based and in continuous transmission systems, including synchronization and channel compensation problems.

TABLE OF CONTENTS

CHAPTER	DESCRIPT	ION PAGE PAG	E
1	INTRODUC	ΓΙΟΝ	
	1.1 History of Wireless Communication		1
	1.2 Wireless Transmission		2
	1.3 Scope of Work		3
	1.4 Organizat	ion of the Thesis	4
2	HiperLAN/2		
	2.1 Introducti	on to HiperLAN/2 Wireless Communication	5
	2.2 System O	verview	7
	2.3 Features	of HiperLAN/2	
	2.3.1	High Speed Transmission	8
	2.3.2	Connection-oriented	9
	2.3.3	QoS Support	9
	2.3.4	Automatic Frequency Allocation	10
	2.3.5	Security Support	10
	2.3.6	Mobility Support	10
	2.3.7	Power Save	11
	2.4 Protocol	Architectural and Layers	
	2.4.1	Physical layer	13
	2.4.2	Data Link Control Layer	15
	2.4.3	Convergence Laver	20

3	MOBILE RADIO ENVIRONMENT	MOBILE RADIO ENVIRONMENT			
	3.1 Introduction	22			
	3.2 Attenuation	22			
	3.3 Multipath Propagation	24			
	3.3.1 Delay Spread	25			
	3.3.2 Intersymbols Interference (ISI)	26			
	3.3.3 Rayleigh Fading	27			
	3.3.4 Doppler Shift	28			
4	OFDM				
	4.1 Introduction	29			
	4.2 OFDM Generation	30			
	4.3 Channel And Receiver Parts	31			
	4.4 Limitation of Bandwidth	33			
	4.5 Adding a Guard Period to OFDM	34			
	4.6 The Problem of Wideband Transmission				
	on Single Carrier	35			
	4.7 Multicarrier Transmission	36			
	4.8 Orthogonality	37			
	4.9 Cyclic prefix	38			
	4.10 Synchronization	39			
5	SIMULATION				
	5.1 Introduction	41			
	5.2 Simulation Stages	41			
	5.3 OFDM System Architecture	43			