

MARIE I TRAVY OF REPORTOR

AN ASSESSMENT OF CORPERCEPTUAL ROLE OF INDIVIDUAL ACOLUTIC (INPALTICRY

re cerlere El 1966 Bree Gammadom

FACULT OF ELECTRICAL ENDINEERING DEPARTMENT OF ELECTRICAL & COMMUNICATION EN INEERING

JULY/DECEMBER 0009

MARA UNIVERSITY OF TECHNOLOGY (UiTM)

AN ASSESSMENT OF THE PERCEPTUAL ROLE OF INDIVIDUAL ACOUSTIC (INFANT CRY)

PREPARED BY

MUHAMMAD HAFIZ ABDULLAH

2004617147

FACULTY OF ELECTRICAL ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMMUNICATION ENGINEERING

Thesis Submitted in Partial Fulfilment of the Requirements for the Bachelor (Honour) Degree

JULY/DECEMBER 2009

Abstract

The cry sound produced by an infant is the result of his or her physical and psychological condition and/or internal or external stimuli. It has been shown that different cry origins, such as pain, hunger, insult and fear, exhibit different cry patterns. Different type of cry will produced different sound such as pitch and length of silent voiced. There are many methods to use for extract the information where we can use Mel-frequency cepstral coefficients (MFCC) and linear prediction cepstral coefficients (LPCC). For this thesis, the LPCC was chosen because over more intuitive frequency domain representations were basically two: applicability and ease of use. The main objective is to build up a characteristic that can be use for recognition phase for automatic infant cry recognition system. There nine sample where three type of infant in three different conditions was use. Each sample was test for pitch with three method and voiced/unvoiced detection. The result from this four method shown different sample will produce different characteristic. Most of method use amplitude and frequency to differentiate the feature.

Acknowledgements

I wish to express my gratitude to Cik Farah Yasmin for directing my work, and for helping me clarify many methodological and experimental design issues. This study would certainly have not been possible without her expert guidance. I want to thank PM. Norasimah Khadri, who commented on an earlier manuscript. Finally, I wish to express my deepest appreciation for my colleague, whose work inspired this study, and who has always been available for help and for the most constructive of criticisms.

Contents

Introduction			6
1.1	The infant cry		9
	1.1.1	The reasons for crying	9
	1.1.2	The production of the cry	11
	1.1.3	The information in the cry	12
	1.1.4	The cry types	15
	1.1.5	The impact of the cry	18
	1.1.6	The potential value of perturbations	25
2	The si	gnal processing	27
3	Digita	ll speech processing	28
4	The choice of LPC		29
	4.1	Potential problems with LPC	31
	4.2	The processing method and organization	32
м.	4.3	The LPC analysis	33
	4.4	Levinson-Durbin Recursive Method	37
		4.4.1 Recursive Algorithm	38
5	Pitch.	Analysis	41
6	The Synthesis		43
7	Results and conclusion		45
	7.1	Autocorrelation Method	47
	7.2	Average Magnitude Difference Function (AMDF)	58
	7.3	Cepstrum	63
	7.4	Voiced/Unvoiced Detection	69