UNIVERSITI TEKNOLOGI MARA

APPLICATION OF GROUND PLANE IN OPTIMIZATION OF MOBILE MEASUREMENT TEST FOR LTE NETWORK COVERAGE

AHMAD FATHI BIN ABDUL RAHIM

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Electrical Engineering

July 2015

ABSTRACT

Nowadays, the cellular communication evolution had shown that the demand for twoway voice communication had decreased against data rate demand after the globalization of Internet usage. This is where the cellular systems took another phase of evolvement with Long Term Evolution (LTE) known as the fourth generation of cellular systems. LTE network is a system of packet switched network where the architecture had been simplified from the previous Universal Telecommunication System (UMTS) which is known as the third generation of cellular system. By having a simpler architecture than previous generation technology, the LTE standard has high data performance in wireless mobility. In measuring the performance of the LTE coverage, a lot of cost had been spent for the radio frequency optimization where the activity had been for the unwanted location where the poor coverage area is not applicable. This study is expected to optimize the data collection methodologies in mobile measurement in which could also be the turnkey of the current Telecommunications industry in benchmarking, new site implementation, solving customer complaints, and other related data collection services. The aim of this study is to develop an advanced measurement of LTE coverage by applying a sheet of electrical conductive material with two different sizes under the measurement device. To determine the effectiveness of the proposed method, the measured value of the conventional measurement has been compared with the proposed method together with the theoretical value of the measurement. From the measurement results, it can be found that by increasing the size of the ground plane had improved the impedance thus resulting in optimum performance of the measurement device. The application of ground plane had optimized the mobile measurement compared to conventional measurement method and hence optimized the mobile measurement test for LTE network coverage.

Keywords-LTE, UE, Mobile Measurement, Drive Test, Ground Plane

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my supervisor Dr Azita Laily Yusof, who has continuous and generous support and trust on my capabilities. I am sincerely grateful for her advice, invaluable guidance and patience in numerous and long discussions throughout the period of my Msc research.

My appreciation to Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia for the amenity of using the main road for drive test purpose inside the university area and ACE Training Malaysia for providing the measurement equipment to make this research a success.

I would like to offer my personal and special thanks to my family especially my wife and my parent who have encouraged me over the years, believed in me and surrounded me with their love and blessing.

Last but not least, many thanks to any parties involved directly or indirectly during the implementation process of this research.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	x
LIST OF SYMBOLS	xii
LIST OF ABBREVIATIONS / NOMENCLATURE	xiii
CHAPTER ONE: INTRODUCTION	
1.1 Research Background	1
1.2 Problem Statement	2
1.3 Significance of Research	2
1.4 Research Objective	3
1.5 Project Scope	3
1.6 Thesis Outline	4
CHAPTER TWO: LITERATURE REVIEW	
2.1 Introduction	5
2.2 Network Architecture	5
2.3 Ground Plane	7
2.4 Wireless Measurement	12
2.5 Radio Frequency Measurement	15
2.6 Summary	18
CHAPTER THREE: METHODOLOGY	
3.1 Introduction	20

3.2	Research Preparation	22
	3.2.1 Measurement Equipment	22
	3.2.2 Ground Plane Implementation	24
	3.2.3 Conventional Measurement	27
	3.2.4 LTE Scanner Measurement	28
3.3	Data Analysis Technique	31
3.4	Summary	32
CH	APTER FOUR: RESULT ANALYSIS AND DISCUSSION	
4.1	Introduction	33
4.2	Conventional RSRP Measurement	34
	4.2.1 26 th April 2015 Test	35
	4.2.2 2 nd April 2015 Test	35
	4.2.3 9 th April 2015 Test	36
	4.2.4 Average Conventional RSRP Measurement	37
4.3	10cm x 10cm Ground Plane RSRP Measurement	38
,	4.3.1 26 th April 2015 Test	39
	4.3.2 2 nd April 2015 Test	39
	4.3.3 9 th April 2015 Test	40
	4.3.4 Average 10cm x 10cm Ground Plane RSRP Measurement	41
	4.3.5 RSRP Deviation Referred to 10cm x 10cm Ground Plane	42
	RSRP Measurement	
4.4	20cm x 20cm Ground Plane RSRP Measurement	43
	4.4.1 26 th April 2015 Test	43
	4.4.2 2 nd April 2015 Test	44
	4.4.3 9 th April 2015 Test	45
	4.4.4 Average 20cm x 20cm Ground Plane RSRP Measurement	47
	4.4.5 RSRP Deviation Referred to 10cm x 10cm Ground Plane	48
	RSRP Measurement	
4.5	Ground Plane and Conventional Measurement Versus Theoretical	49
	Conventional RSRP Measurement	
4.6	Summary	51