A COMPACT SIW RADIATING BANDPASS FILTER FOR C-BAND APPLICATIONS

Thesis is presented in partial fulfillment for the award of the Bachelor of Engineering (Hons.) Electronics (Communication) UNIVERSITI TEKNOLOGI MARA (UiTM)

MOHD 'IZZUL 'IMRAN BIN ISMAIL FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR, MALAYSIA

JULY 2014

ACKNOWLEDGEMENTS

First, I would like to say Alhamdulillah and thanks to ALLAH for giving me health and the strength that finally, I managed to complete this Degree's project within the given time.

I would like to express my gratitude and special thanks to my project supervisor, Madam Noor Hasimah bt Baba for her supports, guidance and advices from the beginning until the completion of this project. I also wish to thank the Antenna Research Group (ARG) for providing measurement facilities and the authority of Electronics (Communication) department of Faculty of Electrical Engineering, Universiti Teknologi MARA Shah Alam for their guidance and valuable suggestions throughout this research. I am deeply indebted to my family members for their prayers, support and encouragement throughout the project progression.

Lastly, grateful acknowledgements to my friends for their help, cooperation and moral support and also sharing some idea in completing this project. Thank You.

ABSTRACT

This paper presents a design of integrated Substrate Integrated Waveguide (SIW) filter and microstrip rectangular patch antenna using multilayer technique on the Printed Circuit Board (PCB). The filtering and radiating element are designed for C-band applications at 4 GHz center frequency. The circular cavity structure using TM₀₁₀ mode for filter and rectangular antenna are used in the design. To realize the technique, modes of SIW filter and microstrip antenna are coupled using rectangular aperture at common ground plane. The simulation results show good antenna gain and radiation pattern that proved the capability to integrate SIW filter and microstrip antenna directly without requirement of external matching, thus reduce the overall size of the device. To prove the concept, the multilayer structure is fabricated using Rogers RO3003 with dielectric constant, $\varepsilon_r = 3$. The measured results show a good agreement with the simulated results and the size is compact with overall physical dimension of 65mm × 40.9mm × 1.285mm.

TABLE OF CONTENTS

DECLARA	ATION	î
DEDICAT	ii iii iv	
ACKNOW		
ABSTRAC		
TABLE OI	F CONTENT	v
LIST OF F	IGURES	viii
LIST OF T	xi	
LIST OF S	YMBOL AND ABBREVIATIONS	xii
CHAPTER	1: INTRODUCTION	1
1.0	Introduction	1
1.1	Background of Study	1
1.2	Problem Statement	2
1.3	Objectives	3
1.4	Scope of Work	3
CHAPTER	2 : LITERATURE REVIEW	4
2.0	Introduction	4
2.1	Substrate Integrated Waveguide (SIW)	4
	2.1.1 SIW Operation Principles	5
2.2	Development of SIW Technology	7
2.3	Filter	10
2.4	Filter Antenna For Wireless Communication	13
2.5	Microstrip Patch Antenna	16
CHAPTER	3 : METHODOLOGY	18
3.0	Introduction	18
3.1	Design Specification	18
3.2	Design Procedure	19
	3.2.1 Resonant Frequency of SIW Filter	19
	3.2.2 Microstrip Patch Antenna	20

	3.2.3	Transition Between Planar Circuit and SIW	21		
3.3	Integr	Integration Between SIW Filter And Microstrip Patch Antenna			
3.4	Flowc	Flowchart of The Design Process 24			
3.5	Simul	Simulation Design Using CST Microwave Studio Software			
	3.5.1	Design Template	26		
	3.5.2	Unit Settings	27		
	3.5.3	Design Substrate of SIW Filter	28		
	3.5.4	Design Of Ground Plane	33		
	3.5.5	Design Integrated Structure of SIW Filter and Antenna	35		
3.6	Simulation Process 3				
	3.6.1	Frequency Range	37		
	3.6.2	Boundary Condition	37		
	3.6.3	Waveguide Port	38		
	3.6.4	Farfield Monitor	40		
	3.6.5	Transient Solver	40		
3.7	Fabric	Fabrication Process			
3.8	Measu	arement Using Vector Network Analyzer	42		
CHAPTER	4 : RES	ULTS AND DISCUSSION	43		
4.0	Introd	uction	43		
4.1	SIW B	SIW Bandpass Filter			
4.2	Integr	Integrated Structure of SIW Filter and Microstrip Patch Antenna 4			
4.3	Comparison Performance of the Integrated SIW Filter and Antenna				
	Betw	een Simulation and Measurement	46		
	4.3.1	Return Loss (S ₁₁)	48		
	4.3.2	Gain	49		
	4.3.3	Radiation Pattern	50		
	4.3.4	E-Field Distribution	52		
4.4	Parametric Study		52		
	4.4.1	Size of Via Holes	52		
	4.4.2	Length of Inset Feed	54		
	4.4.3	Position of the Rectangular Patch Antenna	55		
	4.4.4	Size of the Rectangular Aperture	55		