SIMULATION OF 32-BIT QUADRATURE AMPLITUDE (QAM) IN COMMUNICATION SYSTEM USING MATLAB

Thesis is presented in partial fulfillment for the award of the Bachelor of Electrical Engineering (Honors.) UNIVERSITI TEKNOLOGI MARA

SITI IRDAYU BTE TUKIMAN Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR, MALAYSIA

ACKNOWLEDGEMENT

Alhamdullilah, all praise be to ALLAH, who has given me the strength and inspiration to complete this work. I would like to take this opportunity to express my gratitude and appreciation to many people who were involved directly or in directly with the project. Firstly my utmost gratitude goes to my project supervisor, **Pn.Kamariah Ismail** for her initial suggestions, advice, guidance and invaluable help throughout the development of the project.

A special thanks to my beloved parent, **Tukiman Marto** and **Ramdziah Hj Mohd Yatim**, also my little brother for their love, patience, guidance, wisdom and a great support to be the best that I can be.

Lastly, not forgotten to my lecturers and all my friends for their support and encouragement directly or indirectly throughout my course in UiTM, especially by the time of completing the project.

Siti Irdayu Binti Tukiman Faculty of Electrical Engineering Universiti Teknologi MARA (UiTM) Shah Alam, Selangor Darul Ehsan

ABSTRACT

This thesis highlights the simulation of communication system by using 32 bit Quadrature Amplitude Modulation (32 QAM) by using Matrix Laboratory (MATLAB) mathematical software. In this study the input and output signal in all block diagrams involves in 32-QAM were analyzed and simulated using simulink toolbox in Matlab software. QAM is adapted since it is still widely used modulation technique eventhough there are various number of new modulation technique evolve today. In modern era, precise and accurate design of any system can be achieved by simulation software, therefore MATLAB version 6.5 is chosen in designing, simulating, testing and analyzing the system. Results show that QAM modulation technique is an efficient modulation technique.

TABLE OF CONTENTS

CHAPTER DESCRIPTION PAGE

DECLARATION	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENT	iv
LIST OF FIGURES	vii
LIST OF TABLES	ix
LIST OF ABBREVIATION	x

1 INTRODUCTION

1.0	Introduction	1
1.1	Scope of work	2

2 QUADRATURE AMPLITUDE MODULATION (QAM)

2.0	Introduction	3
2.1	Quadrature amplitude modulation	3
2.2	Eb/No	0
2.3	Bit error rate (BER)	6
2.4	Cyclic codes	7
	2.4.1 Introduction	7
	2.4.2 Definition	7
	2.4.3 Polynomial arithmetic	8
	2.4.4 The generator polynomial	10
2.5	Cyclic redundancy check	11

CHAPTER

4

2.6 Additive white Gaussian Noise (AWGN) channel	12
2.7 Bandwidth for QAM	13
2.8 Comparison between QAM and PSK modulation	13
technique	
2.8.1 Bit and baud comparison	14

3 MATLAB SOFTWARE

3.0 Introduction	17
3.1 Simulink function	18
3.2 Block diagram	19
3.3 Connecting blocks	20
3.4 Running a simulation	20
3.5 sinks	20
3.5.1 Eye diagrams	21
3.5.2 Oscilloscope	21
3.6 Digital modulation in Matlab	21
3.7 Data flow in the model	22
3.7.1 Binary cyclic encoder	22
3.7.2 Buffer	23
3.7.3 Rectangular QAM Modulator	23
3.7.4 Rectangular QAM Demodulator	24
3.7.5 Error rate calculation	25
3.7.6 AWGN channel	26
3.8 DSP sink block function	27
SIMULATION	
4.0 Simulation design	28