DESIGN OF A BOW-TIE MICROSTRIP ANTENNA AT FREQUENCY OF 2.45GHz

This thesis is presented in partial fulfilment for the award of the Bachelor of Engineering Electronic (Communication) with honours.

UNIVERSITI TEKNOLOGI MARA (UITM)

SURIANI BINTI ABDUL SAMAD FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA, 40450 SHAH LAM, SELANGOR, MALAYSIA

18th JULY 2014

ACKNOWLEDGEMENT

In the name of Allah The Most Gracious and The Most Merciful, thanks for His Blessing I could finish this task that was given to all final year students by the coordinator of this project. A million thanks to those who had lending me a hand in completing this assignment. The help that I had received has greatly improved my knowledge and skills for this subject.

My deepest appreciation and sincere thanks to my dedicated project supervisor, En Mohd Nor Md Tan, for his guidance, encouragement, comments, ideas and tolerance that led to a better quality of my project especially in this course.

My deepest thanks and appreciation also goes to my parents and family for their cooperation, encouragement, constructive suggestions and full support. Also, thanks to all of my friends who have contributed by supporting my work till it is fully completed.

Lastly, if there are any mistakes in this report, please forgive me. All the goodness comes from The Almighty and bad comes from us as an ordinary human.

ABSTRACT

In this project, a design of basic bow-tie microstrip antenna is presented with special software. The software used to model and simulate the microstrip antenna is Computer Simulation Technology 2011(CST) on FR4 substrate with dielectric constant of 4.3 and operating frequency of 2.45GHz. A Bow-Tie Microstrip antenna based on the design of equilateral triangular patches formula is designed and focuses on two different angles of 60° and 120° . The general characteristics of antenna such as return loss, gain and radiation pattern were analyzed. The simulation and measurement results are presented. The result shows that the measurement of return loss produce a better performance compared to the simulation with an angle 60° and 120° the measurement increase around 12dB and 7dB respectively.

TABLE OF CONTENT

	CHAPTER	TITLE	PAGE
	TITL	LE .	
	APPI	ROVAL	
	DEC	LARATION	ï
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	v vi ix	
	TAB		
	LIST		
	LIST	OF TABLE	xi
	LIST	OF ABBREVIATIONS	xii
	LIST	OF EQUATIONS	xiv
1.0	INTH	RODUCTION	1
	1.1	BACKGROUND STUDY	.1.
	1.2	PROBLEM STATEMENT	3
	1.3	OBJECTIVES	3
	1.4	SCOPE OF WORK	3
	1.5	PROJECT METHODOLOGY	4
	1.6	THESIS ORGANIZATION	5
2.0	LITE	ERATURE REVIEW	6
	2.1	INTRODUCTION TO ANTENNA	6
		2.1.1 Microstrip Antenna	6
		2.1.2 Application of Microstrip Antenna	ĝ
		2.1.3 Bow-tie Microstrip antenna	9
	2.2	FEEDING METHODS	10
		2.2.1 Microstrip line	11
		2.2.2. Coaxial probe feed	11

		2.2.3 Aperture coupling	12
		2.2.4 Proximity coupling	13
	2.3	FUNDAMENTAL PARAMETERS OF ANTENNAS	14
		2.3.1 Input impedance	14
		2.3.2 Return loss	14
		2.3.3 Voltage standing wave ratio (VSWR)	15
		2.3.4 Gain	15
		2.3.5 Bandwidth	15
		2.3.6 Radiation pattern	16
2	2.4	LITERATURE REVIEW	17
	MET	'HODOLOGY	20
	3.1	INTRODUCTION	20
	3.2	DESIGN SPECIFICATION	20
	3.3	PROJECT FLOW CHART PROCESS	21
	3.4	BOW-TIE MICROSTRIP ANTENNA DESIGN	23
		3.4.1 Design consideration of designing	23
		3.4.2 Microstrip-line feed	24
	3.5	BOW-TIE MICROSTRIP ANTENNA DESIGN USING CST	
		MICROWAVE STUDÌO	25
		3.5.1 Bow-tie microstrip antenna design	26
	3.6	SIMULATION PROCESS	28
	3.7	FABRICATION	28
	3.8	PROTOTYPE ANTENNAS	29
	3.9	MEASUREMENT OF THE ANTENNA	31
		3.9.1 Vector Network Analyzer (VNA)	31
	RES	ULTS AND DISCUSSION	33
	4.1	INTRODUCTION	33
	4 2	SIMULATION RESULT	33
	1.4	4.2.1 Return Loss (S_{11})	34
		4.2.2 Voltage Standing Wave Ratio (VSWR)	35
			20

3.0

4.0