## DESIGN OF BAND PASS FILTER FOR WIRELESS SURVEILLANCE SYSTEM APPLICATION AT 2.4GHZ OPERATING FREQUENCY

Project report is presented in partial fulfillment for the award of the B Eng. (Hons.) in Electrical Engineering UNIVERSITI TEKNOLOGI MARA



MOHAMED AZLAN BIN MOHAMED NOOR Faculty of Electrical Engineering UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM SELANGOR DARUL EHSAN MALAYSIA

## **ACKNOWLEDGEMENTS**



In the name of Allah S.W.T, the Beneficent, the Merciful. Foremost, all praise to Allah for the entire incredible gift endowed upon me and for giving the health and strength to keep up the study and enable me to prepare and complete this thesis.

Firstly, I want to thank to my beloved wife Anizah and daughter Adlina who have given me an endless support especially morally and encouragement to produce the best work. Their support and advices have boosted my spirit to do the best in my final project.

Specially, I would like to express my sincere appreciation for contributions of my supervisor, Mr. Ir. Muhammad Bin Ibrahim for his guidance; comments, encouragement and support for me complete this project.

I would like continue to express my appreciation and gratitude to En Hatta and Puan Shazlina whom has given me a lot of support toward this project.

Also extend my gratitude to my friend, Cik Idayu whom has given me support towards project. Finally I would like thank to individuals who have given encouragement in making this project success. Thank you and may Allah bless and reward them for their generosity.

## ABSTRACT

This paper deals with design of band pass filter for Wireless Surveillance System application. The specification for this filter included an operating frequency (center frequency) of 2.4GHz, bandwidth of 500MHz and pass band ripple of 0.5dB.

The design process including creating a lumped element prototype, which was then transformed into Microwave Office 2004 for schematic circuit design and output verification by simulation results.

One comparison circuit was construct according to the result was published by other paper for comparison of design circuit performance.

The insertion losses and return losses graphs were used in all odd order number N for verification and comparison of performance of the filter specification. The resulting result filter had an operating frequency of 2.4GHz, a 500MHz bandwidth and 0.5 dB ripple.

Keywords: Wireless Surveillance System, band pass filter, lumped element value, transformation, and simulation.

## **TABLE OF CONTENTS**

| CHAPTER<br>PROJECT TITLE |        |                            | PAGE      |
|--------------------------|--------|----------------------------|-----------|
|                          | PROJE  | Ι                          |           |
|                          | DECLA  | ARATION                    | III<br>IV |
|                          | ACKN   | OWLEDGEMENTS               |           |
|                          | ABSTR  | V                          |           |
|                          | TABLE  | E OF CONTENTS              | VI        |
|                          | LIST C | X.<br>XII                  |           |
|                          | LIST C |                            |           |
|                          | ABBRI  | EVIATION                   | XIII      |
| 1                        | INTRO  | 1                          |           |
|                          | 1.1    | Background                 | 1         |
|                          | 1.2    | Objectives Of Project      | 2         |
|                          | 1.3    | Scope Of Project           | 3         |
|                          | 1.4    | Organization Of Project    | 3         |
| 2                        | THEO   | 4                          |           |
|                          | 2.1    | Introduction               | 5         |
|                          |        | 2.1.1 Low Pass Filter      | 5         |
|                          |        | 2.1.2 High Pass Filter     | 5         |
|                          |        | 2.1.3 Band Pass Filter     | 5         |
|                          |        | 2.1.4 Band Stop Filter     | 5         |
|                          | 2.2    | Frequency Response         | 7         |
|                          |        | 2.2.1 Butterworth Response | 7         |
|                          |        | 2.2.2 Chebyshev Response   | 8         |
|                          |        | 2.2.3 Elliptic Response    | 8         |
|                          | 2.3    | Classification of Filter   | 9         |

|     | 2.3.1                             | Passive Filter                             | 9  |  |  |
|-----|-----------------------------------|--------------------------------------------|----|--|--|
|     | 2.3.2                             | Active Filter                              | 9  |  |  |
| 2.4 | Specific                          | Specification of Band Pass Filter9         |    |  |  |
|     | 2.4.1                             | Introduction                               | 9  |  |  |
|     | 2.4.2                             | Band Pass Ripple                           | 10 |  |  |
|     | 2.4.3                             | Maximum Attenuation                        | 10 |  |  |
|     | 2.4.4                             | Pass Band Corner Frequency                 | 10 |  |  |
|     | 2.4.5                             | Stop Band Corner Frequency                 | 10 |  |  |
|     | 2.4.6                             | Center Frequency or Operating Frequency    | 10 |  |  |
|     | 2.4.7                             | Input and Output Impedance                 | 11 |  |  |
|     | 2.4.8                             | Insertion Loss                             | 11 |  |  |
|     | 2.4.9                             | Return Loss                                | 11 |  |  |
|     | 2.4.10                            | Bandwidth Frequency                        | 11 |  |  |
|     | 2.4.11                            | Order Number                               | 12 |  |  |
| 2.5 | Chebys                            | Chebyshev Response Equations               |    |  |  |
|     | 2.5.1                             | Introduction                               | 12 |  |  |
|     | 2.5.2                             | Chebyshev Response Mathematical Equation   | 13 |  |  |
|     | 2.5.3                             | Chebyshev "g" Values Mathematical Equation | 13 |  |  |
|     | 2.5.4                             | Band Pass Conventional Transformation      |    |  |  |
| 51  |                                   | Equation                                   | 14 |  |  |
| мет |                                   | OCV                                        | 16 |  |  |
|     | Dand Dags Eilter Design Store     |                                            | 10 |  |  |
| 5.1 | 2 1 1                             | Band Pass Filter Design Steps              |    |  |  |
|     | 2.1.2                             | To Find "a" Chabyshay Prototyma Element    | 10 |  |  |
| *   | 3.1.2                             | Transformation of Lumrad Element           | 10 |  |  |
|     | J.1.J                             | To construct Shamatic Dand Dass Circuit    | 10 |  |  |
| 2 2 | J.1.4                             | 10 construct Shemauc Band Pass Circuit     | 19 |  |  |
| 3.2 | Application Software Introduction |                                            |    |  |  |
|     | 3.2.1                             | MathCad 14                                 | 20 |  |  |

3

3.2.2 Microwave Office 2004 22