ANALYSIS CHARACTERISTIC AND PERFORMANCE OF PASSIVE RADIO FREQUENCY IDENTIFICATION (RFID) FOR 13.56MHz SYSTEM.

This Project Report is presented in partial fulfillment for award of the Bachelor of Electrical Engineering (Honours) (Communication) UNIVERSITY TEKNOLOGI MARA

MOHD FAIZUL AZMY BIN AMAT

2003655263 Faculty of Electrical Engineering Science & Technology Complex University Teknologi MARA 40450 Shah Alam Selangor Darul Ehsan

ACKNOWLEDGEMENT

In the name of ALLAH S.W.T the Most Generous and the Most Merciful. Alhamdullilah.... Thank you to Allah for giving me the strength and ability to complete this final project, analysis and thesis.

First of all I would like to express my most sincere and appreciation to my project supervisor, Ir. Muhammad. Ibrahim for his kindness, advice, cooperation and time to ensure the success of this thesis. Thanks for their giving me the high opportunity to pursue exiting research, develop and analysis opportunities. He also has given me advises and guidance in submitting this report.

I also would like to thank ,En. Kamaruzaman and En Azman (Uitm Comm Lab),En Ahmad Takhimi (IRIS Engineer) and also my colleague Rozaini for guide me some of the information to find and solved problem in finishing this Passive RFID project.

Lastly but not least, my gratitude also goes to my beloved mother, my family, my sibling, my manager and my friends who gave me encouragement and spiritual strength on this Final Project. Thanks for their unlimited support during my period study in MARA University of Technology.

ABSTRACT

RFID (Radio Frequency Identification) is a technology that incorporates the use of electromagnetic or electrostatic An Radio Frequency Identification RFID system may consist of several component like tags and tags reader. Today world technology of RFID will used in a global security of identification systems.

This thesis paper are presented the characteristic and performance of RFID for high range frequency coverage for passive RFID 13.56MHz system. Scopes of work include the algorithm for RFID flow in which frequency band will be continually implemented considering pre-determined constraints. Optimization process may also be required; hence optimization technique will also be incorporated in this work analysis.

The objective and the goal of this final project paper to describe the characteristic and performance of 13.56MHz RFID system and to give a high level summary about its technological capabilities and the regulatory framework.

TABLE OF CONTENTS

CHAPTER

1

2

PRO	JECT TITLE	
DEC	LARATION	ii
AKN	OWLEDGEMENT	iii
ABS	ТКАСТ	iv
TAB	LE OF CONTENTS	v
LIST	COF FIGURES	ix
LIST	COF TABLE	xi
ABB	REVIATION	xii
INTI	RODUCTION	
1.1	Background	1
1.2	Objective	1
1.3	Scope Of Project	2
1.4	Organization Of The Thesis	2
UND	ERSTANDING PASSIVE RADIO FREQUENCY	
IDE	NTIFICATION (RFID) TECHNOLOGY	
2.1	Introduction	4
2.2	RFID History	4
2.3	Passive RFID System	6

2.1	Introduction			
2.2	RFID History		4	
2.3	Passive	RFID System	6	
	2.3.1	Reader/Transmitter	6	
	2.3.2	Transponder	6	
	2.3.3	Antenna	6	
2.4	Passive	RFID Tags	7	
2.5	Data Ste	orage	7	
2.6	Potential Issue Consideration When Choosing			
	The Type Of RFID and Method For Application			
	2.6.1	Tag Cost	7	
	2.6.2	Infrastructure Cost	8	
	2.6.3	Read Distances	8	
	2.6.4	Government Regulation	8	

	2.6.5	Anti-Collision	9
	2.6.6	Privacy Issues	9
PAS	SIVE RFI	D SYSTEM OPERATIONAL	
3.1	Introdu	ction	10
3.2	Operati	10	
3.3	Typical	Tags	12
3.4	Data Er	coding For Passive RFID System	13
	3.4.1	NRZ (Non-Return To Zero) Direct	14
	3.4.2	Differential Biphase (Manchester)	14
	3.4.3	Frequency Modulation (FM)	14
	3.4.4	Miller	14
	3.4.5	Modified Miller	14
3.5	Data Modulation		
	3.5.1	Direct	15
	3.5.2	FSK (Frequency Shift Keying)	15
	3.5.3	PSK (Phase shift Keying)	16
3.6	Anti-Co	ollision	16

-4	AIDC TEC	CHNOLOGY
-		

3

4.1	Defining AIDC	(Automatics	Identification	And Data	Capture)	17
-----	---------------	-------------	----------------	----------	----------	----

5 ANALYSIS METHODOLOGY

5.1	Project Introduction	22		
5.2	Design Antenna			
	(Inductance Of Rectangular Planar Spiral Inductor)	22		
5.3	Laboratory Test	25		
5.4	Interface Software using Visual basic 6.0	25		
5.5	Loss And Impedance Test	27		
5.6	Develop Software Progarame Using Visual Basic 6.0	28		
ANA LYON DEGULT AND DISCUSSION				

6 ANALYSIS RESULT AND DISCUSSION

6.1	Result And Discussion.	29
-----	------------------------	----