UNIVERSITI TEKNOLOGI MARA

THE PERFORMANCE STUDY OF ULTRASONIC-ASSISTED MEMBRANE ANAEROBIC SYSTEM (UMAS) FOR PROCESS EFFICIENCY AND METHANE PRODUCTION IN PALM OIL MILL EFFLUENT (POME) TREATMENT

NUR FATHIN AMIRAH BINTI SHAFIE

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science**

Faculty of Chemical Engineering

August 2017

ABSTRACT

The positive growth of palm oil industry in Malaysia accompanies adverse effect to the environment in which it has also been identified as the major contributor to the largest pollution load in the form of Palm Oil Mill effluent, POME. The governments are forced to look for alternative technology for the POME treatment because of the increased palm oil demand and awareness on environmental issue. Therefore, a new technology needs to be sought to reduce the impact on environment and at the same time renewable form of energy can be generated as an alternative source for the palm oil mill. Throughout the decades, membrane bioreactors experiments have been widely employed in POME treatment. However, its major drawback is central to membrane fouling problem. Thus, membrane cleaning is an essential part during the operation of membrane reactors since the membrane fouling is an unavoidable issue. Ultrasonicassisted Membrane Anaerobic System (UMAS) is a promising technology through which an ultrasonic device is applied to the system so as to maintain the minimum thickness of biofilm and at the same time to ensure minimum population of bacteria inside the reactor. POME sample was taken from a palm oil mill in Felda Sungai Tengi, Selangor and was evaluated in respective 1, 2 and 3 times of sonication period in order to observe their performances in terms of percentage removal efficiencies and CH4 production. From the study, the measured parameters (COD, BOD, VSS and TSS) that affect the performance of UMAS in treating POME are determined. The overall results demonstrated that 3 times sonication in UMAS was better in operation compared to 1 and 2 times of sonication operations (5 days operating times) as it produced highest COD (98.70 %), BOD (66.28 %), TSS (98.79 %), VSS (92.58 %) removal efficiencies, 980 mL of treated sample and 19676.40 mL CH4 gas production for optimal operating time of 7 days. Hence, the feasibility of treating POME using UMAS within a short period of time at reduced space utility may offer a solution to the treatment problems.

ACKNOWLEDGMENT

Alhamdulillah, a great thank to The Great Almighty ALLAH s.w.t who grants me the knowledge, strength and determination to accomplish my MSc. research work. My deepest gratitude to my parents, Mr. Shafie bin Ali and Mrs. Norwani binti Abdul Mutalib for their love, understanding, encouragement, prayers and patience that supported me through the whole course of this study.

Assoc. Prof. Dr. Ayub Md Som, my main supervisor, provided a motivating, enthusiastic, and critical atmosphere during the many discussions we had. It was a great pleasure to me to conduct this thesis under his supervision. I also acknowledge Mrs. Asdarina Yahya, Prof. Zulkafli Hassan and Prof. Dr. Abdurrahman Hamid Nour who as my co-supervisors provided constructive comments during my study. I would like to express my genuine appreciation to supervisors for their incessant support, guidance and encouragement.

I would like to thank the Dean, Prof. Dr. Norazah Abd Rahman for the continuous support and help rendered throughout my studies. The financial support provided by Education Ministry of Higher as a short term grant through FRGS/1/2014/TK05/UITM/03/2 is gratefully acknowledged. I am very much indebted to MyMaster (MyBrain) for providing financial assistance in the form of scholarship. The greatest appreciation goes to the industry personnel at Felda Sg. Tengi and Felda Jengka for their full cooperation. To all the technicians in the laboratories (Mr. Arman, Mr. Faisal, Mr. Hazri, Mr. Rizuan and Mrs. Mariah) for their kind support to provide laboratory equipments and the staff of Faculty of Chemical Engineering who gave full cooperation, an additional measure of thanks is due. Not forgetting, all friends in UiTM who have always provided an enjoyable and friendly working environment.

Last but definitely not least, my deepest and most heart-felt gratitude to my beloved Mr. Famyzainal bin Zainuddin for the endless love and support. He instilled in me a love for knowledge and a strong work ethic that has enabled me to accomplish anything I set my mind to.

Nur Fathin Amirah binti Shafie

TABLE OF CONTENTS

						Page																	
CONFIRMATION BY PANEL OF EXAMINERS																							
AUTHOR'S DECLARATION																							
ABSTRACT																							
ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES																							
												LIST OF PLATES											
												LIST OF ABBREVIATIONS											
CHA	PTER (ONE: INTR	ODUCTIO	N		1																	
1.1	Resea	rch Backgrou	nd			1																	
1.2	Problem Statement																						
1.3	Objectives of Research																						
1.4	Scope	s	of	of Research		5																	
1.5	Hypot	hesis				5																	
СНА	PTER 1	TWO: LITH	ERATURE	REVIEW		6																	
2.1	Overview																						
2.2	Palm Oil Industry in Malaysia																						
2.3	Funda	mental	of	Anaerobic	Digestion	8																	
2.4	The	Use	of	Anaerobic	Digestion	10																	
2.5	Mecha	anisms	of	Anaerobic	Digestion	11																	
	2.5.1	Hydrolysis				12																	
	2.5.2	Acidogenesi	S			12																	
	2.5.3	2.5.3 Acetogenesis				13																	
	2.5.4	2.5.4 Methanogenesis																					
2.6	Factors Affecting Methane Production																						
	2.6.1 Temperature																						
	2.6.2	pН				15																	

	2.6.3	Mixing	5						16			
2.7	Compa	arison	of	Anaero	bic W	Vith	Aerobic	Process	16			
	2.7.1	Advan	tages a	and Disadv	antages				17			
2.8	Applic	ation	of A	Anaerobic	Process	s Foi	POME	Treatment	19			
	2.8.1	Anaerobic Pond 22										
	2.8.2	Anaerobic Filters, ANF 2										
	2.8.3	8.3 Anaerobic Fluidized Bed, AnFBR Reactor										
	2.8.4	2.8.4 Up-Flow Anaerobic Sludge Blanket, UASB Reactor										
	2.8.5	Continuous Stirred Tank Anaerobic Reactor, CSTR										
	2.8.6	Up-Flow Anaerobic Sludge-Fixed Film, UASFF Reactor 2										
	2.8.7 Anaerobic Membrane Bioreactor (MAS)								30			
2.9	Fundamental of Membrane Separation Process								31			
	2.9.1	Microf	ïltratic	on (MF)					32			
	2.9.2	Ultrafiltration (UF) 33										
	2.9.2.1 Crossflow Ultrafiltration (CUF) 3											
	2.9.3	.3 Nanofiltration (NF) 3										
	2.9.4	Revers	e Osm	osis (RO)					34			
2.10	Memb	rane Fo	uling						34			
2.11	Ultras	onic-ass	isted N	Aembrane A	Anaerobio	e Syste	m (UMAS)		35			
2.12	Wastewater Parameters							37				
	2.12.1 Biological Oxygen Demand, BOD								38			
	2.12.2 Chemical Oxygen Demand, COD								38			
	2.12.3 Total Suspended Solid, TSS								39			
	2.12.4 Volatile Suspended Solid, VSS								40			
	2.12.5 Volatile Fatty Acid, VFA								40			
2.13	Batch	Culture							40			
2.14	Kineti	cs o	f N	/licrobial	Growth	n in	Batch	Culture	41			
CHAF	HAPTER THREE: RESEARCH METHODOLOGY											
3.1	Overv	iew							44			
3.2	Flow			of		Metl	hodology		44			
3.3	Sample Collection											
3.4	Bioreactor Operation								47			
	3.4.1		Spe	cification		of	UM	IAS	50			