MODELLING FLOW AND HEAT TRANSFER AROUND A SEATED HUMAN BODY

MOHD SALAHUDDIN BIN MUHMED (2005757110)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor of Engineering (Hons) Mechanical

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > MAY 2009

ACKNOWLEDGEMENT

Alhamdulillah a big praise to Allah because Has bestowed upon His Grace. And so that, I've managed to complete my final year project thesis right on the time. I think without Allah bless and help all my work cannot be done perfectly that expected.

When completing this project, I gain a lot of experience which I think cannot be get from anywhere except in my study time in Univeersity Teknologi MARA (UiTM). I through a lot of difficulties and challenge when finishing my project which make me be learn to be patient whether the challenge is big or small and so that without people from the back which gives me help, support, advice and guides to completing my thesis. Firstly I would like to thank to my supervisor Mr Baljit Singh and my friend Izmir as cosupervisor for the support, help, advising and guiding me throughout the completion of this final year project.

I also would like to thank to my parent which give their pray, encourage, moral support for me to fulfill my final year project perfectly. And not forget for all my closed friends, my mates and also Lab CFD technician which give best and constantly support to help me to finish my thesis.

Finally,. My highly appreciation all people above for the counsel and encouragement is boundless and sincere. I hope this thesis would make another sources of knowledge for everyone in the future especially for Mechanical Engineering Faculty.

ABSTRACT

In order to obtain Modeling Flow and Heat Transfer Around a Seated Human Body, there are several factors and parameters that need to be studied as well as temperature around a room and wall temperature, relative humidity, air speed, radiation heat transfer coefficients for different body segment and some contaminants. Modeling Flow and Heat Transfer Around A Seated human Body is a research that needs to be carried out continuously due to the variable condition of air speed, temperature rises in the room that depending on weather and the different parameters gain, thus there would be various modeling flow and heat transfer around a seated human body. This particular research has simulate the use of k-s model for predicting flow and heat transfer throughout the channel acting as the room by using computational fluid dynamics as the medium. The main goal was to examine a manikin human body under various wind condition where manikin human body is placed under weak wind condition by velocity of 0.25 m/s. Next, the wind velocity is increased up to 4.5 m/s. The radiation heat transfer and convection flow around the human body are computed in detailed by computational fluid dynamics software. This research will cover the comparison between the numerical results and the experimental data. Moving towards of modeling flow and heat transfer around a seated human body, this particular research represents a detailed of the surface geometry which been created and analyzed by STAR-Design and STAR-CCM software thus will computed the radiation heat transfer coefficient and the natural convection flow around a manikin human body.

TABLE OF CONTENTS

CONTENTS	PAGE
PAGE TITLE	i
ACKNOWLEDGEMENT	ii
ABSTRACT	iii
TABLE OF CONTENTS	iv

LIST OF TABLES vii LIST OF FIGURES viii LIST OF ABBREVIATION Х

CHAPTER 1 INTRODUCTION

1.1	Project Over	view				2	
1.2	Synopsis		of	Pro	ject	2	
1.3	Objective		of	Pro	ject	3	
1.4	Significant		of	Pro	oject	3	
1.5	Scope		of	Proj	ect	3	
1.6	Project Methodology						
	1.6.1 Draw	ving				4	
	1.6.2 STA	R-Design a	nd STAR-CCM+	- Analysis		4	
	1.6.3 Theo	retical Cal	culation			4	
CHA	PTER 2	LITER	ATURE REVIE	W		6	
CHA	PTER 3	THEOF	RETICAL BAC	KGROUND)		
3.1	Thermal Con	nfort				11	
3.2	Thermal	Conditi	on of	the	Environment	12	
	3.2.1 Air T	Cemperature	e			13	
	3.2.2 Relat	tive Humid	ity			13	
	3.2.3 Air V	/elocity				14	
	3.2.4 Mean	n Radiant T	emperature			14	
3.3	Heat Transfer between the Body and Its Environment						
3.4	Prediction	O	of Thermal Con		Comfort	18	
3.5	Theory	of	Convection	Heat	Transfer	19	
3.6	Theory	of	Radiation	Heat	Transfer	20	

- of Transfer Compressible and Incompressible Flow Steady and Unsteady Flow 3.7
- 3.8

20 21

3.9	Laminar Flow								23
3.10	Turbulent Flow								24
	Turbulence Model							25	
3.12	K-e M	odel							25
	3.12.1	Transpo	rt Equation for S	Standard	l k-e Model	l			26
			rt Equation for 1			lel			27
			g the Turbulent	Viscosi	ity				27
	3.12.4	Model (Constant						28
CHA	PTER 4]	INTRODUCTI	ON TO	CFD				
4.1	Introdu	uction to	Computational I	Fluid D	ynamics				30
4.2	CD-A	dapco							31
4.3	STAR	-Design							32
			al User Interface	e					33
		CAD In	-						34
			Cleaning and M	leshing					34
			Wrapping						35
	4.3.5	Advance	e CFD Solver						35
CHA	PTER 5]	METHODOLC	OGY					
5.1	Comp	utational	Fluid Dynamics	(CFD)					38
	5.1.1	Pre-proc	cessor						38
		Solver							39
		Postpro							39
5.2		D Analys							40
5.3		Model Ge							40
5.4		ary Cond							41
5.5	Mesh	Generatio	on						47
CHA	PTER 6]	RESULT						
6.1	CFD F	Results Co	omparison						51
6.2	Seated	Human	Model						51
6.3	Simulation of STAR-Design Software							52	
	6.3.1 Analysis at 0.25 m/s							53	
	6.3.2 Analysis at 0.75 m/s						56		
	6.3.3 Analysis at 1.25 m/s							59	
	6.3.4 Analysis at 2.5 m/s							62	
	6.3.5	•	s at 4.5 m/s						65
6.4	Discus		of	tl	he		nalysis		68
6.5	Calcul			Heat	Transfer	of	Human	Body	70
6.6	Calcul		or Radiation	Heat	Transfer	of	Human	Body	71
6.7	Calcul	ation for	the Whole Body	Parts					71