

A STUDY OF THE EFFECTS OF MACHINING PARAMETERS ON THE SURFACE ROUGHNESS IN THE TURNING PROCESS

NOR AKRAM BIN ABDULLAH (2005388988)

A thesis is submitted in partial fulfillment for the award of Bachelor Engineering (Hons) (Mechanical)

Faculty of Mechanical Engineering Universiti Teknologi MARA(UjTM)

MAY 2010

ACKNOWLEDGEMENTS

Assalamualaikum w.b.t.

Firstly, my deepest gratitude to my family especially my mother, Pn. Kamariah Bt Ujang for her encouragement and prayers for my success here. I would also like to take this opportunity to express my sincere thanks and appreciation to my beloved supervisor, Pn. Nursalbiah Bt Nasir for her constant guidance and constructive comments throughout the completion of this work.

I am happy to present my appreciation to all technicians of Mechanical Engineering workshop and laboratory of the Faculty of Mechanical Engineering for their willingness to guide and help me to do my experiments using all available instrument and facilities.

I cannot end without thanking my friends, on whose constant encouragement and love I have relied throughout my time at the university. Their unflinching courage and conviction will always inspire me, and I hope to continue, in my own small way, the noble mission to which they gave their lives. Thank you so much

ABSTRACT

In machining operation, the quality of surface finish is an important requirement for many turned workpieces. Thus, the choice of optimized cutting parameters is very important for controlling the required surface quality. The objective of this study is to develop a better understanding of the effects of spindle speed and cutting feed rate with constant depth of cut on the surface roughness. The experiments are performed on conventional lathe machine using mild steel specimens with carbide cutting tool. Cutting speeds in the range of 300 to 1200 m/min, feed variation up to 0.08 mm and depth of cut of 1mm are performed as experiment parameters. The quality of the surface will be will be measured with 3D surface roughness graph and 3D view. All the resulting experimental then data are analysed in order to develop an understanding which can provide insight into the problems of controlling the finish of machined surfaces when the cutting parameters are adjusted to obtain a certain surface finish.

TABLE OF CONTENT

ACKNOWLEDGMENT	i
ABSTRACT	if
TABLE OF CONTENT	iii
LIST OF TABLES	vii
LIST OF FIGURES	vii
LIST OF ABBREVATION	ix

CHAPTER I INTRODUCTION

1.0	Introduction	1
1.1	Problem Statement	2
1.2	Objective	3
1.3	Scope of the Project	3
1.4	Significant of the Project	3

CHAPTER II LITERATURE REVIEW

2.0	Turning Process			4
	2.0.1	Tool Geomet	ſy	6
	2.0.2	Material-remo	val rate	7
	2.0.3	Forces in Tur	ning	9
		2.0.3.1	Cutting Force	9
		2.0.3.2	Thrust Force	9
		2.0.3.3	Radial Force	9
	2.0.4	Roughing and	I finishing cuts	10
	2.0.5	Tools materia	ls, feeds, and cutting speeds	10
	2.0.6	Cutting Fluids		10
2.1	Surfac	ace Texture and Roughness		15
	2.1.1	Measuring su	rface roughness	17
	2.1.2	Three-dimens	ional surface measurement	19

- 2.2 Optical Emission Spectrometry
 - 2.2.1 Spectrometer
 - 2.2.2 Sources
 - 2.2.3 Imaging system
- 2.3 Low Carbon Steel

CHAPTER III PROJECT METHODOLOGY

- 3.0 Project Flow
- 3.1 Literature Review
- 3.2 Sample Preparation
 - 3.2.1 Turning Process
 - 3.2.2 Machine Preparation
 - 3.2.3 Cutting Tool Preparation
 - 3.2.4 Specimen Preparation
- 3.3 Laboratory Works
 - 3.3.1 Spectrometer Testing
 - 3.3.2 Procedure of Spectrometer Test
 - 3.3.3 Spectrometer Testing Machine Specification
- 3.4 Surface Roughness Measurement
- 3.5 Analysis Data and Discussion

CHAPTER IV RESULT AND DISCUSSION

- 4.0 Spectrometer Test
- 4.1 Surface Roughness
 - 4.1.1 Analysis Data of Surface Roughness
- 4.2 Correlation between machining parameters and surface rough