AN ANT COLONY SEARCH ALGORITHM (ACSA) APPROACH FOR UNIT COMMITMENT PROBLEM

MOHAMAD MASRI B MOHAMAD JAIB

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA MALAYSIA

MAY 2010

ACKNOWLEDGEMENT

In the name of ALLAH Most Gracious Most Merciful

It is with the deepest gratitude that ALLAH gives me strength and ability to complete this project.

First and foremost, I would like to acknowledge my most sincere gratitude to my project supervisor Associate Professor Bibi Norasiqin Sheikh Rahimullah for her support, continuous guidance, valuable comments and suggestions towards the completion of this final project.

I would like to express my gratitude to my friends Khairul Nizam, Farid and all whom I known especially all the PLK students at the Faculty of Electrical Engineering, Universiti Teknologi MARA for their advice and support.

I gratefully acknowledge my mother, father and family for their understanding, support and constant encouragement.

Last but not least, credit goes to everybody who involved either directly or indirectly for their concern on each and every single assistance once I asked. All persons who had given me treasured points of view and lots of self motivational support.

"May Allah bless and reward them for their generosity".

ABSTRACT

This thesis presents an Ant Colony Search Algorithm (ACSA) to solve unit commitment problem. The study involves the development of ACSA algorithm and engine to solve unit commitment issues. Problem formulation of the unit commitment takes into consideration the minimum up and down time constraints, start up cost and spinning reserve, which is defined as minimization of the total objective function while satisfying the associated constraints. Problem specific operators are proposed for the satisfaction of time dependent constraints. Problem formulation, representation and the simulation results for a three and four units generator-scheduling problem are presented.

TABLE OF CONTENTS

CHAPTER		LIST OF TITLE	PAGE
	DECLARATION		i
	DED	ICATION	ii iii
	ACK	NOWLEDGEMENT	
	ABSTRACT		iv
	TAB	LE OF CONTENTS	v - vi vii viii
	LIST	OF FIGURES	
	LIST	OF TABLE	
	ABB	REVIATIONS	ix
1.0	INTF	RODUCTION	
	1.1	Project Overview	1 - 2
	1.2	Project Objective	2
	1.3	Scope of the Project	3
	1.4	Organization of Thesis	3-4
2.0	LITE	CRATURE REVIEWS	
	2.1	Introduction	5 - 6
	2.2	Unit Commitment	6 - 7
	2.3	Ant Colony Search Algorithm	7
	2.4	Concept of Ant Colony Search Algorithm	8-9
L 3.			
3.0	MET	HODOLOGY	
	3.1	Introduction	10
	3.2	Research Design	11 - 12

5.2	research Design	••	
3.3	Unit Commitment	13 -	16
3.4	Algorithm for Ant Colony Optimization	17 -	20

4.0 **RESULTS AND DISCUSSION**

4.1	Introd	luction	21
4.2	Case . serve	A: Three unit generators are to be committed to a 24-h load pattern	21
	4.2.1	Fuel Cost components	22
	4.2.2	Initial condition	22
	4.2.3	Load Patterns and results	22 – 24

4.3	Case	B: Four unit generators are to be committed to	25
	serve	a 8-hour load pattern	
	4.3.1	Fuel Cost components	25
	4.3.2	Initial condition	25
	4.3.3	Load Patterns and results	25-26

5.0	CON	CONCLUSION AND FUTURE DEVELOPMENT		
	5.1	Conclusion	27	
	5.2	Future Development	27	

REFERENCES

28 - 29

APPENDIX

A.1	IEEE 12-Bus Reliability Test System (RTS)	30-31
A.2	Bus Admittance Matrix for Power Flow Solution	32
A.3	Power Flow Solution using Newton Raphson Method	33 - 35
A.4	Algorithm to Tabulate the Data in Table Form	36
A.5	Line Flow Algorithm	37 - 38
A.6	Generation of Random Number	39 - 40
A.7	Ant Colony Search Algorithm	41-43