APPLICATION OF SHUFFLED FROG LEAPING ALGORITHM (SFLA) TO LONG TERM GENERATION EXPANSION PLANNING

This thesis is presented in partial fulfillment of the requirement for the award of the Bachelor of Engineering (Hons) Electrical

NURUL ULYA BINTI IBRAHIM FACULTY OF ELECTRICAL ENGINEERING UNIVERSITI TEKNOLOGI MARA 40450 SHAH ALAM, SELANGOR MALAYSIA JULY 2016

ACKNOWLEDGEMENT

First of all, I would like to thank ALLAH almighty for His blessing and guiding so that give me ability to accomplish this thesis as a partial fulfilment of the requirements for the degree of electrical engineering at Faculty of Electrical Engineering, Universiti Teknologi Mara, Shah Alam.

In this very special occasion I would like to express my deep gratitude and appreciation to my supportive, and understanding project supervisor, Prof Madya Bibi Norasiqin binti Sheikh Rahimullah, for given her valuable time, advice, support and correction to this thesis from the beginning up to the end of the writing.

In this special moment, I would like to express my deepest thanks to my beloved parents, Ibrahim bin Hassan and Nor Nazizah binti Hj said for their love encouragement and supports my mentality that made me possible to finish my final project. Last but not least, my thanks are also addressed to person who have participated directly or indirectly in contribution towards the progress of this thesis including my family, friends and lecturer.

ABSTRACT

This thesis presents a solution to generation expansion planning problem based on Shuffled Frog Leaping Algorithm (SFLA). The proposed SFLA in this study is developed using Matlab programming. This method is tested for 15 existing power plant and five generation candidates within 10 years of planning. The simulation results obtained using the proposed algorithm show that the minimum cost can be obtained for types of candidate.

Keywords - shuffled frog leaping algorithm (SFLA), Generation expansion planning (GEP)

TABLE OF CONTENTS

СНАРТЕН	R DESCRIPTION	PAGE
INTROD	UCTION	
1.1	Background of study	
1.2	Problem Statement	I
13	Project objectives	2
1.5		2
1.4	Scope of work	3
1.5	Thesis organization	3
		2
LITERA	ΓURE REVIEW	
2.1	Generation Expansion Planning	5
2.2	Emerging Optimization Technique	5
	2.2.1 Genetic Algorithm	6
	2.2.2 Artificial Neural Network	6
	2.2.3 Analytic Hierarchy Process	7
	2.2.4 Simulated Annealing Algorithm	8
	2.2.5 Fuzzy Set Theory/Fuzzy Logic	8
	2.2.6 Particle Swarm Optimization	9
2.3	Element in GEP	9
	2.3.1 Peak Load/Demand	10
	2.3.2 Load Duration Curve	11
	2.3.3 Plant Types	12
	2.3.4 Reliability	12
	2.3.5 Other Factors	12
	2.3.6 Planning Horizon	12

TABLE OF CONTENTS

CHAPTER	DESCRIPTION	PAGE
METHODOLOGY		
3.1 Introduction		14
3.2 Matlab Progra	mming	14
3.3 Shuffled Frog	Leaping Algorithm	15
3.4 Element of the	SFLA	16
3.4.1 Initial Po	pulation	16
3.4.2 Sorting a	nd distribution	16
3.4.3 Memeple	ex Evaluation	16
3.4.4 Shuffling	р Т	18
3.4.5 Terminal	condition	18
3.5 Optimization I	Process using SFLA	19
3.6 Pattern Progre	ss of Local and Global in SFLA	21
3.7 GEP Problem	Formulation	23
3.7.1 Objective	e Function	24
3.7.2 Constrain	nt	26
3.8 Solving GEP p	problem using SFLA	27