

UNIVERSITI TEKNOLOGI MARA

OPTIMAL INVESTMENT PLANNING FOR DISTRIBUTED GENERATION

MUHAMMAD HAIKAL BIN UZIR

Thesis submitted in fulfillment of the requirement for the degree of Bachelor of Engineering (Hons) Electrical Engineering

Faculty of Electrical Engineering

July 2017

ACKNOWLEDGEMENT

All praises to Allah Almighty for His mercy and guidance for allowing me to complete this thesis as requirements for the degree of electrical engineering at Faculty of Electrical Engineering, Universiti Teknologi Mara (UiTM), Shah Alam.

Special appreciation to my supportive project supervisor of, Assoc. Prof Bibi Norasiqin binti Sheikh Rahimullah for giving me her full attention, valuable time and useful advice throughout the entire process of completing this thesis.

I would also like to thank to my parents and family giving me their utmost support, motivating me to finish my final year project. Last but not least, I would like to thank all those who were involved in contributing to the completion of this project.

ABSTRACT

This study proposes an approach by using particle swarm optimization (PSO) in order to obtain an optimal investment planning from the perspective of a distribution company (DISCO) for distributed generation (DG). The proposed method is tested on a 8-bus system and the results show that the investment of DISCO and the cost of operation are at minimum.

TABLE OF CONTENTS

APPROVAL	i
AUTHOR DECLARATION	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF SYMBOLS AND ABBREVIATIONS	X
CHAPTER 1 INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Scope of Work	3
1.5 Thesis Organization	4
CHAPTER 2 LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Distributed Generation	5
2.2.1 DG Technologies	6
2.2.2 DG Potential Benefits	11
2.3 Optimization Techniques	13
2.3.1 Mixed Integer Programming	13
2.3.2 Fixed Charge Network Formulation	14
2.3.3 Capacitated Transhipment	14
2.3.4 Artificial Neural Network	14
2.3.5 Quantum-Inspired Evolutionary Programming	15

2.4 Distribution Company (DISCO)	16
CHAPTER 3 METHODOLOGY	17
3.1 Introduction	17
3.2 MATLAB Programming	17
3.3 Particle Swarm Optimization	18
3.4 Particle Swarm Optimization Algorithm	19
3.4.1 Declaration of Constant	19
3.4.2 Initial Velocity and Position	19
3.4.3 Calculate Fitness	20
3.4.4 Initial Pbest and Gbest	21
3.4.5 Calculate New Position and New Fitness	21
3.4.6 Construct Pbest and Gbest Matrix	22
3.4.7 Calculate New Position and Check Stopping Criteria	23
3.4.8 Display Results	23
3.5 DG Investment Planning Model	24
3.5.1 Mathematical Model	24
3.5.2 Constraints	25
3.6 PSO Algorithm for Solving Optimal Investment Planning	28
CHAPTER 4 RESULTS AND DISCUSSIONS	30
4.1 Introduction	30
4.2 PSO Parameter Setting	30
4.3 Data for the Investment	31
4.4 Results	32
CHAPTER 5 CONCLUSIONS	37
5.1 Conclusion	37